Space-time Modeling for Linking Climate Change,Pollutant Exposure, Built Environm

连接气候变化、污染物暴露、建筑环境的时空模型

基本信息

  • 批准号:
    8478101
  • 负责人:
  • 金额:
    $ 33.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-12-15 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This is a joint collaborative effort between North Carolina State University, Duke University, and the University of North Carolina at Chapel Hill. The expertise at the 3 institutions complements each other, and brings synergy. We will achieve the following objectives: (1) The development of broad spatial-temporal statistical models to study the impact under climatic change conditions of air pollution on human health. We will improve upon existing methods, by introducing Bayesian multivariate spatio-temporal statistical models that characterize simultaneously complex spatial and temporal dependence structures in the environmental stressors, climatic variables, and health outcomes, while taking into account different sources of uncertainty in models and data. We will develop novel spatial quantile regression models for the climatic and pollution variables for better characterization of extremes, tail behavior, and complex dependences between weather and pollution. (2) The development of Bayesian hierarchical shrinkage methods for assessing spatial associations between complex pollutant mixtures and health outcomes. We will improve upon existing approaches by simultaneously accounting for different pollutant types, such as ozone and particulate matter (PM) or speciated PM, characterizing the spatial temporal structure of the susceptible periods of fetal development (pregnancy outcomes) and the exposure lag (mortality outcome), while taking into account different sources of uncertainty in models and data. (3) We will build neighborhood deprivation and environment indices for linkage to health outcomes. We will use the statistical frameworks above and data on birth weight and gestational age at delivery in the Pregnancy, Infection, and Nutrition (PIN) study, which examines neighborhood factors concerning the built and perceived physical environment in relation to pregnancy outcomes, to bring together GIS capabilities, deterministic models for air pollution, climate and weather, and novel spatial statistical modeling approaches for dimension reduction. (4) We will combine the statistical models in aims 1-3 to study the impact of air pollution and extreme weather on human health under projected future climatic conditions. Health data to be examined include the following: U.S. daily mortality in 2001-2006 at the county level (and geocoded at the street level for the states of NC and NY). Birth weight (small-for-gestational age) and gestational age at delivery (preterm birth) in a sample of infants born in 10 U.S. states who participated as controls in the National Birth Defects Prevention Study (NBDPS), for whom geocoded latitude and longitude at delivery are available. Individual-level cardiovascular birth defects geocoded data are available, as well as individual-level geocoded cardiovascular birth defects data for 15,000 cases and controls in NBDPS. We will make this new methodology broadly applicable and disseminated by developing free-access software and conducting extensive validation and diagnostics of our approaches, as well as presenting measures of goodness-of-fit. PHS SF424 (Updated 12/09) Page 1 Continuation Format Page
描述(由申请人提供):这是北卡罗来纳州州立大学,杜克大学和查佩尔山的北卡罗来纳州大学之间的联合合作努力。这三个机构的专业知识相辅相成,并产生协同作用。 我们将实现以下目标:(1)开发广泛的时空统计模型,以研究气候变化条件下空气污染对人类健康的影响。我们将通过引入贝叶斯多变量时空统计模型来改进现有方法,该模型同时表征环境压力源,气候变量和健康结果中复杂的空间和时间依赖结构,同时考虑模型和数据中不同来源的不确定性。我们将为气候和污染变量开发新的空间分位数回归模型,以更好地描述极端情况,尾部行为以及天气和污染之间的复杂依赖关系。(2)贝叶斯分层收缩方法的发展,用于评估复杂污染物混合物和健康结果之间的空间关联。我们将通过同时考虑不同的污染物类型(如臭氧和颗粒物(PM)或物种PM),表征胎儿发育(妊娠结局)和暴露滞后(死亡结局)的敏感期的时空结构,同时考虑模型和数据中不同来源的不确定性来改进现有方法。(3)我们将建立邻里贫困和环境指数,以便与健康结果联系起来。我们将在妊娠、感染和营养(PIN)研究中使用上述统计框架和分娩时出生体重和胎龄的数据,该研究考察了与妊娠结局有关的建成和感知物理环境的邻里因素,将GIS功能、空气污染、气候和天气的确定性模型以及用于降维的新型空间统计建模方法结合在一起。(4)我们将联合收割机结合目标1-3中的统计模型,研究在预测的未来气候条件下,空气污染和极端天气对人类健康的影响。要检查的健康数据包括以下内容:2001-2006年美国县一级的每日死亡率(以及北卡罗来纳州和纽约州街道一级的地理编码)。出生体重(小于胎龄)和分娩时胎龄(早产),来自美国10个州的婴儿样本,他们作为对照参加了国家出生缺陷预防研究(NBDPS),分娩时的地理编码纬度和经度可用。个人水平的心血管出生缺陷地理编码数据是可用的,以及个人水平的地理编码心血管出生缺陷数据的15,000例病例和对照NBDPS。我们将通过开发免费访问软件,对我们的方法进行广泛的验证和诊断,以及提出拟合优度的措施,使这种新方法广泛适用和传播。PHS SF 424(2009年12月更新)第1页

项目成果

期刊论文数量(81)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Joint variable selection for fixed and random effects in linear mixed-effects models.
  • DOI:
    10.1111/j.1541-0420.2010.01391.x
  • 发表时间:
    2010-12
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Bondell HD;Krishna A;Ghosh SK
  • 通讯作者:
    Ghosh SK
Statistical issues in health impact assessment at the state and local levels.
  • DOI:
    10.1007/s11869-009-0033-3
  • 发表时间:
    2009-03-01
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Fuentes, Montserrat
  • 通讯作者:
    Fuentes, Montserrat
Space-time data fusion under error in computer model output: an application to modeling air quality.
  • DOI:
    10.1111/j.1541-0420.2011.01725.x
  • 发表时间:
    2012-09
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Berrocal VJ;Gelfand AE;Holland DM
  • 通讯作者:
    Holland DM
Nonparametric Bayesian models for a spatial covariance.
空间协方差的非参数贝叶斯模型。
  • DOI:
    10.1016/j.stamet.2011.01.007
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reich,BrianJ;Fuentes,Montserrat
  • 通讯作者:
    Fuentes,Montserrat
A stochastic neighborhood conditional autoregressive model for spatial data.
空间数据的随机邻域条件自回归模型。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian J. Reich其他文献

Correction: Nonparametric conditional density estimation in a deep learning framework for short-term forecasting
  • DOI:
    10.1007/s10651-022-00543-6
  • 发表时间:
    2022-08-26
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    David B. Huberman;Brian J. Reich;Howard D. Bondell
  • 通讯作者:
    Howard D. Bondell
Variable Selection in Bayesian Smoothing Spline ANOVA Models
贝叶斯平滑样条方差分析模型中的变量选择
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian J. Reich;Curtis B. Storlie;Bondell;D. Howard
  • 通讯作者:
    D. Howard
A spatiotemporal optimization engine for prescribed burning in the Southeast US
美国东南部规定燃烧的时空优化引擎
  • DOI:
    10.1016/j.ecoinf.2024.102956
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    7.300
  • 作者:
    Reetam Majumder;Adam J. Terando;J. Kevin Hiers;Jaime A. Collazo;Brian J. Reich
  • 通讯作者:
    Brian J. Reich
Guest Editors’ Introduction to the Special Issue on “Computer Models and Spatial Statistics for Environmental Science”
Modelling wildland fire burn severity in California using a spatial Super Learner approach
使用空间超级学习器方法对加利福尼亚州的荒地火灾烧伤严重程度进行建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Nicholas Simafranca;Bryant Willoughby;Erin O’Neil;Sophie Farr;Brian J. Reich;Naomi Giertych;Margaret C. Johnson;Madeleine A. Pascolini
  • 通讯作者:
    Madeleine A. Pascolini

Brian J. Reich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian J. Reich', 18)}}的其他基金

Spatial Causal Inference for Wildland Fire Smoke Effects on Air Pollution and Health
荒地火灾烟雾对空气污染和健康影响的空间因果推断
  • 批准号:
    10334535
  • 财政年份:
    2020
  • 资助金额:
    $ 33.28万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了