Bacterial cell wall synthesis, shape and septation
细菌细胞壁的合成、形状和分隔
基本信息
- 批准号:8721967
- 负责人:
- 金额:$ 46.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAntibiotic TherapyAntibioticsBacteriaBacterial PhysiologyBiological AssayBiological ProcessCell ShapeCell WallCell divisionCellsCellular biologyCharacteristicsCosmeticsCytokinesisCytoplasmCytoplasmic ProteinCytoplasmic StructuresEcologyEffectivenessEnzymesEscherichia coliExhibitsFluorescence-Activated Cell SortingGenerationsGeneticGeometryGoalsGrantGrowthHandImmuneImmune systemInfectionInvestigationKnowledgeLightLinkMaintenanceMedicalMembraneMetabolismMethodsMinorModelingModificationMoldsMorphologyNatureNutrientNutritional statusOrganismOsmotic PressurePathogenesisPathway interactionsPenicillin-Binding ProteinsPeptidoglycanPlayPredatory BehaviorProcessPropertyProteinsProtocols documentationReactionRecoveryRegulationRenaissanceResistanceResourcesRoleShapesSignal TransductionSpheroplastsStressStructureSurfaceSystemTechniquesTechnologyTimeVirulenceWorkantimicrobial drugassaultcell motilitycopingin vivomicroorganismmutantnovelpathogenic bacteriaperiplasmpublic health relevancetooluptake
项目摘要
DESCRIPTION (provided by applicant):
Bacteria exhibit extreme morphological diversity, a fact known since they were first visualized over 300 years ago. Yet only in the last 5-7 years has it become clear that these differences are much more than cosmetic. Instead, cell shape is of fundamental and medical importance, contributing to bacterial survival and virulence by influencing nutrient uptake, cell-to-surface attachment, motility, differentiation, and resistance to predation and host immune assaults. Nor is morphology static: bacteria invest significant resources to manipulate their shapes to cope with changes in growth rate and nutritional status and to respond to antibiotics and other environmental stresses. In short, morphology is not a frivolous or neutral characteristic, but plays crucial roles in bacterial cell biology, ecology and pathogenesis. Despite a recent renaissance in such studies, we understand surprisingly little about how cells create and maintain their shapes. What we do know is that most bacteria are protected by a peptidoglycan cell wall and that the way this wall is synthesized determines cell shape. Our long-term goal is to
understand the structure, synthesis, regulation and functional implications of peptidoglycan and the enzymes that create and modify it. To that end, we propose to extend our understanding of bacterial physiology and morphology by pursuing the following Aims. Aim 1] Identify new morphological mechanisms and regulators by applying newly adapted methods for enriching shape mutants via fluorescence- activated cell sorting (FACS). One reason so little is known about these matters is because almost all morphological regulatory agents were discovered accidently. Here, we will use FACS as a genetic tool to enrich, isolate and study morphological mutants in a directed search for new mechanisms that regulate bacterial shape. Aim 2] Identify and characterize the mechanisms required for de novo shape generation by employing a newly devised Spheroplast Recovery assay. Virtually everything known about cell wall synthesis and morphology involves mechanisms that preserve or extend pre-existing walls. Little or nothing is known about how cells re-create their shapes when their walls are damaged severely or removed altogether, as occurs when bacteria encounter host immune systems. We find that survival in these latter circumstances demands new mechanisms to support or supplant the classic maintenance pathways. Aim 3] Characterize critical FtsZ- peptidoglycan reactions, particularly those that will tell us: a) how periplasmic peptidoglycan and penicillin binding proteins control the geometry of the cytoplasmic Z ring during cell division; and b) how cytoplasmic FtsZ triggers the synthesis of peptidoglycan during the critical transition from cell elongation to division. These poorly-understood interactions determine the integrity, shape and propagation of bacterial cells. In summary, these new tools and approaches will enable us to investigate, faster and in greater depth, the numerous mysteries that still obscure our understanding of some of the most basic issues in bacterial physiology. The work will also serve as a model for similar morphological investigations in other organisms.
描述(由申请人提供):
细菌表现出极端的形态多样性,这是自300多年前第一次被发现以来就知道的事实。然而,只有在过去的5-7年里,人们才清楚地认识到,这些差异不仅仅是表面上的。相反,细胞形状是基本的和医学上的重要性,有助于细菌的生存和毒力,通过影响营养吸收,细胞表面附着,运动,分化和抵抗捕食和宿主免疫攻击。形态学也不是静态的:细菌投入大量资源来操纵它们的形状,以科普生长速率和营养状态的变化,并对抗生素和其他环境压力作出反应。简而言之,形态不是一个轻浮或中性的特征,而是在细菌细胞生物学,生态学和致病机制中起着至关重要的作用。尽管最近这类研究有所复兴,但令人惊讶的是,我们对细胞如何创造和维持其形状的了解甚少。我们所知道的是,大多数细菌都受到肽聚糖细胞壁的保护,而肽聚糖细胞壁的合成方式决定了细胞的形状。我们的长期目标是
了解肽聚糖的结构、合成、调节和功能意义以及产生和修饰肽聚糖的酶。为此,我们建议通过追求以下目标来扩展我们对细菌生理学和形态学的理解。目的1]通过应用新适应的方法通过荧光激活细胞分选(FACS)富集形状突变体来鉴定新的形态学机制和调节剂。对这些问题知之甚少的一个原因是,几乎所有的形态调控因子都是偶然发现的。在这里,我们将使用流式细胞仪作为一种遗传工具,丰富,分离和研究形态突变体的新机制,调节细菌的形状定向搜索。目的2]通过采用新设计的球体恢复测定法来鉴定和表征从头形状产生所需的机制。几乎所有关于细胞壁合成和形态学的已知知识都涉及保留或扩展预先存在的细胞壁的机制。当细胞壁严重受损或完全被移除时,细胞如何重新创建它们的形状,就像细菌遇到宿主免疫系统时发生的那样,人们对此知之甚少或一无所知。我们发现,在后一种情况下生存需要新的机制来支持或取代经典的维持途径。目的3]表征关键的FtsZ-肽聚糖反应,特别是那些将告诉我们:a)周质肽聚糖和青霉素结合蛋白如何在细胞分裂期间控制细胞质Z环的几何形状;和B)细胞质FtsZ如何在从细胞伸长到分裂的关键转变期间触发肽聚糖的合成。这些知之甚少的相互作用决定了细菌细胞的完整性、形状和繁殖。总之,这些新的工具和方法将使我们能够更快、更深入地研究仍然模糊我们对细菌生理学中一些最基本问题的理解的众多谜团。这项工作也将作为其他生物类似形态学研究的模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN D YOUNG其他文献
KEVIN D YOUNG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN D YOUNG', 18)}}的其他基金
Bacterial cell wall synthesis, shape and septation
细菌细胞壁的合成、形状和分隔
- 批准号:
7934807 - 财政年份:2009
- 资助金额:
$ 46.79万 - 项目类别:
COMPLEX PHENOTYPES OF MUTIPLE MUTANTS OF E COLI
大肠杆菌多种突变体的复杂表型
- 批准号:
6316369 - 财政年份:2000
- 资助金额:
$ 46.79万 - 项目类别:
COMPLEX PHENOTYPES OF MUTIPLE MUTANTS OF E COLI
大肠杆菌多种突变体的复杂表型
- 批准号:
6520198 - 财政年份:2000
- 资助金额:
$ 46.79万 - 项目类别:
Bacterial cell wall synthesis, shape and septation
细菌细胞壁的合成、形状和分隔
- 批准号:
7884273 - 财政年份:2000
- 资助金额:
$ 46.79万 - 项目类别:
COMPLEX PHENOTYPES OF MUTIPLE MUTANTS OF E COLI
大肠杆菌多种突变体的复杂表型
- 批准号:
6086028 - 财政年份:2000
- 资助金额:
$ 46.79万 - 项目类别:
Bacterial cell wall synthesis, shape and septation
细菌细胞壁的合成、形状和分隔
- 批准号:
6828572 - 财政年份:2000
- 资助金额:
$ 46.79万 - 项目类别:
Bacterial cell wall synthesis, shape and septation
细菌细胞壁的合成、形状和分隔
- 批准号:
9094611 - 财政年份:2000
- 资助金额:
$ 46.79万 - 项目类别:
Bacterial cell wall synthesis, shape and septation
细菌细胞壁的合成、形状和分隔
- 批准号:
7684216 - 财政年份:2000
- 资助金额:
$ 46.79万 - 项目类别:
Bacterial cell wall synthesis, shape and septation
细菌细胞壁的合成、形状和分隔
- 批准号:
8102777 - 财政年份:2000
- 资助金额:
$ 46.79万 - 项目类别:
Bacterial cell wall synthesis, shape and septation
细菌细胞壁的合成、形状和分隔
- 批准号:
7088810 - 财政年份:2000
- 资助金额:
$ 46.79万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 46.79万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 46.79万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 46.79万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 46.79万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 46.79万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 46.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 46.79万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 46.79万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 46.79万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 46.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists