Bioengineered organoids-on-a-chip to study enteric disease
用于研究肠道疾病的生物工程类器官芯片
基本信息
- 批准号:8855063
- 负责人:
- 金额:$ 22.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAntibiotic TherapyAntibioticsBacteriaBiochemicalBiological MarkersBiomedical EngineeringCellsChemical StimulationCoculture TechniquesColony-forming unitsComplexComputersCuesDataDevelopmentDevicesDiseaseDrug CompoundingDrug Delivery SystemsDrug TransportElectrical ResistanceElectrodesEngineeringEnteralEpithelialEpitheliumGeometryGoalsGrowthHarvestHomeostasisHumanHuman EngineeringImmuneImmunofluorescence ImmunologicIn VitroInflammatory Bowel DiseasesIntestinesLactobacillusLifeLiquid substanceMaintenanceMeasurementMeasuresMechanical StimulationMechanicsMetabolicMethodsMicrobeMicrofabricationMicrofluidicsModelingMolecularNutrientOpticsOrganoidsOxygenPeptidesPerfusionPharmaceutical PreparationsPhysiologicalProbioticsProceduresProductionPropertyProteinsPublishingPumpRegulationSalmonella entericaSalmonella typhimuriumSamplingShapesStem cellsStructureSystemTestingTherapeuticTimeTissuesVillusVirusabsorptionbasecytokinedesignexperiencefeedingfluorescein isothiocyanate dextranin vivoinnovationinsightinstrumentkillingslithographymanmicrobialnovelpathogenpathogenic bacteriaself organizationsensor
项目摘要
PROJECT SUMMARY/ABSTRACT
This project is a combined design-driven and hypothesis-driven project to bioengineer microscale models of
enteric disease. Starting with the Spence lab's in vitro intestine system that accurately reflects both the
complex cellular makeup and the appropriate layered organization of the human intestine, this project will
provide these 3-Dimensional (3D) Human Intestinal Organoids (HIOs) with physiologicaly soft but confining
mechanical cues as well as microscale fluid perfusion capabilities that will mimic luminal flow, to further induce
physiological structures such as crypts and villi. Both of these properties (constraint, flow) have a significant
impact on intestine development, differentiation and function. Our hypothesis is that by providing a
mechanically confined culture condition and fluid perfusion, as opposed to the free expanding culture with a
static, enclosed lumen as is currently used for HIO formation, that the epithelial layer will self-organize
additional levels of physiological complexity, including as crypts and villi, along with associated spatial
organization of intestinal stem cells (ISCs) in crypts and differentiated cells on the villi. Incorporation of
microscale fluid perfusion capabilities in HIO culture devices will also allow precise regulation of intraluminal
flow of nutrients, and long-term colonization with bacteria, and pathogens. Technologically, this project will be
innovative in developing a method (“supersoft lithography”) for reproducibly creating supersoft PDMS
structures with physiological moduli of 1-100 kPa.
To enable closed-loop control for maintenance of tissue homeostasis as well as to provide readouts of tissue
function, this project will also integrate miniature oxygen sensors and electrodes for trans-epithelial electrical
resistance (TEER) measurements. Additionally, sampling capabilities from the interior and exterior of the HIO
will be incorporated to enable off-line measures of fluid and drug absorption/secretion. HIO microscale culture
devices will also facilitate measurement of cytokine production in integrated HIO-immune co-cultures.
Finally, we will demonstrate modularity and utility of the bioengineered and instrumented HIO system by
integrating NAMSED Projects 1, 2 and 3. Specifically, instrumented-HIOs with luminal flow will be generated,
co-cultured with immune cells and colonized by probiotic microbes (Lactobacillus GG, LGG) and/or pathogens
(S.typhimurium). In each co-culture, (probiotic/HIO/immune vs. probiotic/pathogen/HIO/immune), we will test
the ability of the system to generate real-time physiological data by measuring epithelial barrier function
(TEER, FITC-Dextran), oxygen concentration, cytokine production, and finally by examining epithelial invasion
by S.typhimurium. We will also test the utility of this system to screen drugs/compounds by generating
instrumented LGG/S.typhimurium/HIO/immune co-cultures and adding Cefoperazone, an antibiotic that will
selectively target the pathogen S.typhimurium, but not the probiotic LGG. The ability of Cefoperazone to kill
S.typhimurium will be examined by culturing the luminal effluent to determine S.typhimurium colony forming
units before, during and after antibiotic treatment. Finally, when live cultures are terminated, we will harvest the
system and examine cellular and molecular difference between the different groups using immunofluorescence
or qRT-PCR on purified immune cells and epithelium.
项目摘要/摘要
该项目是一个设计驱动和假设驱动相结合的项目,旨在对微尺度模型进行生物工程
肠道疾病。从斯宾塞实验室的体外肠道系统开始,它准确地反映了
复杂的细胞构成和适当的人体肠道分层组织,这个项目将
为这些三维(3D)人体肠道器官(HIO)提供生理上柔软但受限的
机械信号以及微尺度流体灌流能力,将模拟管腔流动,以进一步诱导
生理结构,如隐窝和绒毛。这两个属性(约束、流)都具有重要的
对肠道发育、分化和功能的影响。我们的假设是,通过提供一个
机械受限的培养条件和液体灌流,而不是自由膨胀的培养
静态的、封闭的管腔,就像目前用于HIO形成的那样,上皮层将自组织
生理复杂性的额外水平,包括隐窝和绒毛,以及相关的空间
隐窝中的肠干细胞(ISCs)和绒毛上的分化细胞的组织。成立为法团
HIO培养设备中的微尺度液体灌流能力也将允许精确调节管腔内
营养物质的流动,以及细菌和病原体的长期定居。从技术上讲,这个项目将是
在开发可重复创建超软PDMS的方法(超软光刻)方面的创新
生理模数为1-100千帕的结构。
以实现用于维持组织内稳态以及提供组织读数的闭环控制
功能,该项目还将集成微型氧气传感器和电极,用于跨上皮电
电阻(TEER)测量。此外,来自HIO内部和外部的采样能力
将被纳入,以实现对液体和药物吸收/分泌的离线测量。HIO微型培养
设备还将有助于在整合的HIO-免疫共培养中测量细胞因子的产生。
最后,我们将通过以下方式演示生物工程和仪表化HIO系统的模块化和实用性
集成NAMSED项目1、2和3。具体地说,将生成具有管腔流动的仪表式HIO,
与免疫细胞共培养,并被益生菌(乳杆菌GG、LGG)和/或病原体定植
(小鼠沙门氏菌)。在每种共培养中(益生菌/HIO/免疫vs.益生菌/病原体/HIO/免疫),我们将测试
该系统通过测量上皮屏障功能来生成实时生理数据的能力
(Teer,FITC-葡聚糖),氧浓度,细胞因子产生,最后通过检测上皮侵袭
鼠伤寒沙门氏菌。我们还将测试该系统的效用,通过生成
仪器化的LGG/鼠伤寒沙门氏菌/HIO/免疫共培养,并添加头孢哌酮,一种将
选择性地以鼠伤寒沙门氏菌为靶标,而不是益生菌LGG。头孢哌酮的杀伤力
将通过培养腔内流出物来检测鼠伤寒沙门氏菌,以确定鼠伤寒沙门氏菌的集落形成。
抗生素治疗前、治疗中和治疗后。最后,当活的文化被终止时,我们将收获
系统并利用免疫荧光检测不同组之间的细胞和分子差异
或对纯化的免疫细胞和上皮细胞进行qRT-PCR。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHUICHI TAKAYAMA其他文献
SHUICHI TAKAYAMA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHUICHI TAKAYAMA', 18)}}的其他基金
High Throughput 3D Cell Assay for Metastatic Prostate Cancer
转移性前列腺癌的高通量 3D 细胞检测
- 批准号:
8652646 - 财政年份:2013
- 资助金额:
$ 22.57万 - 项目类别:
High Throughput 3D Cell Assay for Metastatic Prostate Cancer
转移性前列腺癌的高通量 3D 细胞检测
- 批准号:
8313454 - 财政年份:2012
- 资助金额:
$ 22.57万 - 项目类别:
Microfluidic Analysis of Oscillatory Signaling Pathways Using Phase Locking
使用锁相对振荡信号通路进行微流控分析
- 批准号:
8334587 - 财政年份:2011
- 资助金额:
$ 22.57万 - 项目类别:
Microfluidic Analysis of Oscillatory Signaling Pathways Using Phase Locking
使用锁相对振荡信号通路进行微流控分析
- 批准号:
8021760 - 财政年份:2011
- 资助金额:
$ 22.57万 - 项目类别:
Microfluidic Analysis of Oscillatory Signaling Pathways Using Phase Locking
使用锁相对振荡信号通路进行微流控分析
- 批准号:
8485620 - 财政年份:2011
- 资助金额:
$ 22.57万 - 项目类别:
Microfluidic Analysis of Oscillatory Signaling Pathways Using Phase Locking
使用锁相对振荡信号通路进行微流控分析
- 批准号:
8665981 - 财政年份:2011
- 资助金额:
$ 22.57万 - 项目类别:
Microfluidic Tissue Engineering of Small Airway Injuries
小气道损伤的微流控组织工程
- 批准号:
7822406 - 财政年份:2009
- 资助金额:
$ 22.57万 - 项目类别:
Active Nanofluidics for Analysis of Chromatin and Genomic DNA Structures
用于染色质和基因组 DNA 结构分析的活性纳米流体
- 批准号:
7793537 - 财政年份:2008
- 资助金额:
$ 22.57万 - 项目类别:
Active Nanofluidics for Analysis of Chromatin and Genomic DNA Structures
用于染色质和基因组 DNA 结构分析的活性纳米流体
- 批准号:
7614542 - 财政年份:2008
- 资助金额:
$ 22.57万 - 项目类别:
Active Nanofluidics for Analysis of Chromatin and Genomic DNA Structures
用于染色质和基因组 DNA 结构分析的活性纳米流体
- 批准号:
7452691 - 财政年份:2008
- 资助金额:
$ 22.57万 - 项目类别:
相似海外基金
SBIR Phase II: Development of a urine dipstick test that can guide immediate and appropriate antibiotic therapy for treatment of complicated urinary tract infections
SBIR II 期:开发尿液试纸测试,可以指导复杂尿路感染的立即和适当的抗生素治疗
- 批准号:
2213034 - 财政年份:2023
- 资助金额:
$ 22.57万 - 项目类别:
Cooperative Agreement
Personalized Antibiotic Therapy in the Emergency Department: PANTHER Trial
急诊科的个性化抗生素治疗:PANTHER 试验
- 批准号:
10645528 - 财政年份:2023
- 资助金额:
$ 22.57万 - 项目类别:
Strategies for improving the efficacy of combinatorial antibiotic therapy in chronic infections
提高慢性感染联合抗生素治疗疗效的策略
- 批准号:
10736285 - 财政年份:2023
- 资助金额:
$ 22.57万 - 项目类别:
A Novel Bone Targeted Antibiotic Therapy for the Treatment of Infected Fractures
一种治疗感染性骨折的新型骨靶向抗生素疗法
- 批准号:
10603486 - 财政年份:2023
- 资助金额:
$ 22.57万 - 项目类别:
Severe Cutaneous Adverse Reactions Following Outpatient Antibiotic Therapy: A Population-based Study
门诊抗生素治疗后的严重皮肤不良反应:一项基于人群的研究
- 批准号:
449379 - 财政年份:2020
- 资助金额:
$ 22.57万 - 项目类别:
Studentship Programs
Sex-Specific Differences in End-of-Life Burdensome Interventions and Antibiotic Therapy in Nursing Home Residents With Advanced Dementia
患有晚期痴呆症的疗养院居民的临终干预和抗生素治疗的性别差异
- 批准号:
422034 - 财政年份:2020
- 资助金额:
$ 22.57万 - 项目类别:
Optimizing outpatient parenteral antibiotic therapy to support hospital-in-the-home program across the unique environmental conditions of Australia
优化门诊肠外抗生素治疗,以支持澳大利亚独特环境条件下的家庭医院计划
- 批准号:
nhmrc : 1197866 - 财政年份:2020
- 资助金额:
$ 22.57万 - 项目类别:
Investigator Grants
Resistance evolution in the presence of combination antibiotic therapy
联合抗生素治疗下耐药性的演变
- 批准号:
2241853 - 财政年份:2019
- 资助金额:
$ 22.57万 - 项目类别:
Studentship
Host-pathogen interactions in antibiotic therapy for listeriosis
李斯特菌病抗生素治疗中宿主与病原体的相互作用
- 批准号:
18K07106 - 财政年份:2018
- 资助金额:
$ 22.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multipurpose targeted nano-antibiotic therapy to fight tough infection in bones
多用途靶向纳米抗生素疗法可对抗骨骼中的严重感染
- 批准号:
9788269 - 财政年份:2018
- 资助金额:
$ 22.57万 - 项目类别: