Multi-faceted Approach to Modeling ACL Injury Mechanisms

ACL 损伤机制建模的多方面方法

基本信息

  • 批准号:
    8735607
  • 负责人:
  • 金额:
    $ 59.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-05-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Anterior cruciate ligament (ACL) injury is a major medical and financial burden. Despite identification of modifiable risk factors and effective preventive measures, global ACL injury incidence remains largely unaffected. Under the parent grant we identified plausible valgus collapse mechanisms for ACL injury without concomitant medial collateral ligament (MCL) injury. A novel cadaveric testing setup we developed under the funded grant has demonstrated a nearly 90% rate of ACL tear. Our findings show that combined knee abduction moment (KAM), anterior tibial shear force (ATS) and internal tibial rotation moment (ITR) generates significantly greater strain in the ACL relative to the MCL, and reproduces kinematics similar to those observed during ACL injury. While these types of loading, in isolation, increase ACL strain and potentially risk of injury, their combined effects o ACL biomechanics are not well understood. In this competing renewal application we will develop a highly impactful and unique ACL injury risk assessment protocol that accounts for multiplanar biomechanics. The protocol will be developed through a novel, integrative in vivo, in vitro and in silico (in sim) approach. The Specific Aims are: I) To develop and validate a multiplanar ACL injury risk assessment algorithm that predicts ACL injury risk based on dynamic ACL strain, and II) To integrate in vivo, in vitro and in silico approaches to establish a 'continuum of risk' that accounts for the relative contributions of KAM, ITR, and ATS to ACL rupture. The critical distinction between the two Aims is the biomechanical context: Aim I will determine how the ACL is strained during non-injurious screening tasks that can be performed in a laboratory or clinical setting. Aim II will establish a direct link between high strain movemet patterns and the ACL injury mechanism(s). We hypothesize that: I) Peak input values of KAM, ITR, and ATS from in vivo data will accurately predict peak ACL strain when landing biomechanics are reproduced in vitro and in silico, and II) Incremental increases in KAM, ITR and ATS, scaled from 'high-risk' in vivo measures will lead to ACL rupture in vitro and in silico. In Specific Aim I, multi-planar kinematics and kinetics will be directly used as inputs to our validated, sex-specific, viscoelastic FE knee models and in vitro test protocols to test our hypotheses. We will also aim to identify and validate simple, clinically-based predictors for KAM, ITR, and ATS to maximize the clinical applicability of the protocol. In Aim II, we will directly examine the roles of KAM, ITR and anterior tibial shear on the likelihood of ACL rupture. High-risk in vivo values for KAM, ATS, and ITR will be incrementally increased until tissue failure is achieved in cadavers, or ACL failure strains are reached in FE models. Furthermore, in Aim II we will optimize our FE modeling approach through validation of a methodology to customize models that accounts for variability in anatomy and tissue mechanics. This research will significantly improve the ability of researchers and clinicians to effectively screen athletes for ACL injury risk, and will increase ACL injury prevention program enrollment and efficacy.
描述(由申请人提供):前交叉韧带(ACL)损伤是一个主要的医疗和经济负担。尽管确定了可改变的风险因素并采取了有效的预防措施,但全球ACL损伤的发生率在很大程度上仍未受到影响。在母基金的资助下,我们确定了ACL损伤的合理外翻塌陷机制,而不伴有内侧副韧带(MCL)损伤。我们在基金资助下开发的一种新的尸体测试装置已经证明了近90%的ACL撕裂率。我们的研究结果表明,联合膝关节外展力矩(KAM),胫骨前剪切力(ATS)和胫骨内旋转力矩(ITR)产生显着更大的应变在ACL相对于MCL,并再现类似于ACL损伤期间观察到的运动学。虽然这些类型的负荷单独增加了ACL应变和潜在的损伤风险,但其对ACL生物力学的综合影响尚未得到很好的理解。在这一竞争性的续约申请中,我们将开发一个高度有效和独特的ACL损伤风险评估方案,该方案考虑了多平面生物力学。该方案将通过一种新的、整合的体内、体外和计算机模拟(in sim)方法开发。具体目标是:I)开发并验证一种多平面ACL损伤风险评估算法,该算法可根据动态ACL应变预测ACL损伤风险,II)整合体内、体外和计算机模拟方法,以建立一个“风险连续体”,该风险连续体可解释KAM、ITR和ATS对ACL断裂的相对贡献。两个目标之间的关键区别在于生物力学背景:目标I将确定在实验室或临床环境中进行的非损伤性筛选任务期间ACL如何拉紧。目的II将建立高应变运动模式和ACL损伤机制之间的直接联系。我们假设:I)当在体外和计算机模拟中再现着陆生物力学时,来自体内数据的KAM、ITR和ATS的峰值输入值将准确预测峰值ACL应变,以及II)从“高风险”体内测量值缩放的KAM、ITR和ATS的增量增加将导致体外和计算机模拟中的ACL断裂。在特定目标I中,多平面运动学和动力学将直接用作我们经确认的性别特异性粘弹性FE膝关节模型和体外测试方案的输入,以测试我们的假设。我们还将致力于识别和验证KAM,ITR和ATS的简单,基于临床的预测因子,以最大限度地提高该协议的临床适用性。在目标II中,我们将直接检查KAM、ITR和胫骨前剪切对ACL断裂可能性的作用。KAM、ATS和ITR的高风险体内值将逐渐增加,直至尸体中达到组织失效,或FE模型中达到ACL失效应变。此外,在Aim II中,我们将通过验证方法来优化FE建模方法,以定制模型,从而解释解剖结构和组织力学的变化。这项研究将显著提高研究人员和临床医生有效筛查运动员ACL损伤风险的能力,并将增加ACL损伤预防计划的招募和有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy E Hewett其他文献

ACL graft metabolic activity assessed by 18FDG PET-MRI.
通过 18FDG PET-MRI 评估 ACL 移植物代谢活性。
  • DOI:
    10.1016/j.knee.2017.04.008
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert A Magnussen;K. Binzel;Jun Zhang;Wen;Melanie U Knopp;David C Flanigan;Timothy E Hewett;Christopher C Kaeding;Michael V Knopp
  • 通讯作者:
    Michael V Knopp

Timothy E Hewett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy E Hewett', 18)}}的其他基金

Multi-faceted Approach Modeling ACL Injury Mechanisms
多方位方法模拟 ACL 损伤机制
  • 批准号:
    7846129
  • 财政年份:
    2009
  • 资助金额:
    $ 59.83万
  • 项目类别:
Multi-faceted Approach Modeling ACL Injury Mechanisms
多方位方法模拟 ACL 损伤机制
  • 批准号:
    8284418
  • 财政年份:
    2009
  • 资助金额:
    $ 59.83万
  • 项目类别:
Multi-faceted Approach to Modeling ACL Injury Mechanisms
ACL 损伤机制建模的多方面方法
  • 批准号:
    8651985
  • 财政年份:
    2009
  • 资助金额:
    $ 59.83万
  • 项目类别:
Multi-faceted Approach to Modeling ACL Injury Mechanisms
ACL 损伤机制建模的多方面方法
  • 批准号:
    8911250
  • 财政年份:
    2009
  • 资助金额:
    $ 59.83万
  • 项目类别:
Multi-faceted Approach Modeling ACL Injury Mechanisms
多方位方法模拟 ACL 损伤机制
  • 批准号:
    7654283
  • 财政年份:
    2009
  • 资助金额:
    $ 59.83万
  • 项目类别:
Multi-faceted Approach Modeling ACL Injury Mechanisms
多方位方法模拟 ACL 损伤机制
  • 批准号:
    8069179
  • 财政年份:
    2009
  • 资助金额:
    $ 59.83万
  • 项目类别:
Neuromuscular Intervention Targeted to Mechanisms of ACL Load in Female Athletes
针对女运动员 ACL 负荷机制的神经肌肉干预
  • 批准号:
    8123294
  • 财政年份:
    2008
  • 资助金额:
    $ 59.83万
  • 项目类别:
Neuromuscular Intervention Targeted to Mechanisms of ACL Load in Female Athletes
针对女运动员 ACL 负荷机制的神经肌肉干预
  • 批准号:
    7665088
  • 财政年份:
    2008
  • 资助金额:
    $ 59.83万
  • 项目类别:
Neuromuscular Intervention Targeted to Mechanisms of ACL Load in Female Athletes
针对女运动员 ACL 负荷机制的神经肌肉干预
  • 批准号:
    8309809
  • 财政年份:
    2008
  • 资助金额:
    $ 59.83万
  • 项目类别:
Neuromuscular Intervention Targeted to Mechanisms of ACL Load in Female Athletes
针对女运动员 ACL 负荷机制的神经肌肉干预
  • 批准号:
    7528929
  • 财政年份:
    2008
  • 资助金额:
    $ 59.83万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.83万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 59.83万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 59.83万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 59.83万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 59.83万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 59.83万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 59.83万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 59.83万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 59.83万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 59.83万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了