High-Density Recording and Stimulating Microelectrodes
高密度记录和刺激微电极
基本信息
- 批准号:8826494
- 负责人:
- 金额:$ 60.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsAreaBasic ScienceBenchmarkingBiocompatibleBostonBrainCaliberCarbonCellsChargeChronicClinicalDataDepositionDevelopmentDevice DesignsDevicesDiseaseElectrochemistryElectrodesElectronicsEngineeringEnvironmentFailureFiberFilmGeometryHemorrhageHistologicHumanImmuneImplantImplanted ElectrodesIn VitroIndividualInjection of therapeutic agentLearningMeasurementMeasuresMechanicsMethodologyMethodsMicroelectrodesModalityMono-SNatureNeuronsNeurosciencesNeurotransmittersOxygenPacemakersPatternPerformancePhysiologicalPlasmaPolymersPrincipal InvestigatorProcessPropertyProsthesisRecords ControlsResearchResearch PersonnelResolutionSalineSeriesShapesSignal TransductionSiteStructureSurfaceTechnologyTestingTherapeuticTimeTissuesTraumaUniversitiesWidthWorkbasebrain machine interfacebrain volumeclinical applicationdensitydesignflexibilityimplantable deviceimplantationimprovedin vivoinsightmanufacturing processminimally invasiveneural patterningneural stimulationnew technologynext generationnovelpreventprototypepublic health relevancerelating to nervous systemresponsescale uptoolvan der Waals force
项目摘要
DESCRIPTION (provided by applicant): This project seeks to develop a high density, minimally invasive electrode array for long-term recording and control of brain activity. Multielectrode arrays are an essential tool in experimental and clinical neuroscience, yet current arrays are severely limited by a mismatch between large or stiff electrodes and the fragile environment of the brain. Chronically implanted electrodes cause ongoing damage to the brain, and an active process of rejection eventually silences neural signals. Failure of chronic implants over long time-scales makes it very challenging to study the neural basis of learning. It also limits the power of brain machine interfaces for human prosthetics or neural stimulation based therapeutics. To minimize electrode damage, the size of implants must be reduced, but multichannel arrays built from the smallest electrodes are impossible to implant due to buckling of the individual fibers as they enter the brain. The proposed recording and stimulating electrode array solves this mechanical problem - achieving a high channel with sub-cellular (5 micron) microfibers distributed in three-dimensional volumes of the brain. To implant the device, individual electrodes are bundled together, strengthening each fiber through mutual support. During implant, the bundle of fibers splays apart and each fiber follows its own separate path into the brain as it is deflected by tissue inhomogeneity. This process preserves the minimally invasive properties of a single fiber. Chronic recordings from prototype designs reveal stable signals, including multiunit recordings with time-scales of months that show minimal drift in neural firing patterns. This project builds on preliminary data to engineer a robust, high channel count (64 channel polyimide) device suitable for both recording and stimulation in basic science studies and eventually for clinical applications. However, due to the minimally invasive nature of this brain interface, the device will be scalable to even higher channel counts. To advance this technology, the project involves a series of aims to optimize the electrode insulator, apply high performance tip coatings, and develop scalable manufacturing processes on a polyimide cable platform. These engineering aims are followed by rigorous benchmarks in vitro and in vivo, including 18 month tests of stimulating electrode capabilities. The project will also demonstrate the potential of the high density, minimally invasive electrode array to trigger diverse activity patterns by shaping the geometry of current flowing through small volumes of the brain.
描述(由申请人提供):该项目旨在开发一种高密度、微创电极阵列,用于长期记录和控制大脑活动。多电极阵列是实验和临床神经科学中的重要工具,但目前的阵列受到大或硬电极与大脑脆弱环境之间不匹配的严重限制。长期植入的电极会对大脑造成持续的损伤,而一个积极的排斥过程最终会使神经信号沉默。长期植入的失败使得研究学习的神经基础变得非常具有挑战性。它还限制了用于人类假肢或基于神经刺激的治疗的脑机接口的能力。为了最大限度地减少电极损伤,必须减小植入物的尺寸,但是由于单个纤维在进入大脑时会弯曲,因此由最小电极构建的多通道阵列不可能植入。所提出的记录和刺激电极阵列解决了这个机械问题-实现了具有分布在大脑三维体积中的亚细胞(5微米)微纤维的高通道。为了植入该装置,单个电极被捆绑在一起,通过相互支撑来加强每个纤维。在植入过程中,纤维束分开,并且每个纤维随着其被组织不均匀性偏转而遵循其自己的单独路径进入大脑。这个过程保留了单根纤维的微创特性。从原型设计的慢性记录显示稳定的信号,包括多单位记录与时间尺度的几个月,显示最小的漂移神经放电模式。该项目建立在初步数据的基础上,设计出一种坚固耐用的高通道数(64通道聚酰亚胺)设备,适用于基础科学研究中的记录和刺激,并最终用于临床应用。然而,由于这种大脑接口的微创性质,该设备将可扩展到甚至更高的通道数。为了推进这项技术,该项目涉及一系列目标,以优化电极绝缘体,应用高性能尖端涂层,并在聚酰亚胺电缆平台上开发可扩展的制造工艺。这些工程目标遵循严格的体外和体内基准,包括刺激电极能力的18个月测试。该项目还将展示高密度、微创电极阵列的潜力,通过塑造流经大脑小体积的电流的几何形状来触发不同的活动模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy James Gardner其他文献
Timothy James Gardner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy James Gardner', 18)}}的其他基金
Corticostriatal contributions to motor exploration and reinforcement
皮质纹状体对运动探索和强化的贡献
- 批准号:
10700765 - 财政年份:2020
- 资助金额:
$ 60.36万 - 项目类别:
Corticostriatal contributions to motor exploration and reinforcement
皮质纹状体对运动探索和强化的贡献
- 批准号:
10053204 - 财政年份:2020
- 资助金额:
$ 60.36万 - 项目类别:
High-density microfiber interfaces for deep brain optical recording and stimulation
用于深部脑光学记录和刺激的高密度微纤维接口
- 批准号:
9244484 - 财政年份:2016
- 资助金额:
$ 60.36万 - 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
- 批准号:
9097816 - 财政年份:2014
- 资助金额:
$ 60.36万 - 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
- 批准号:
8927703 - 财政年份:2014
- 资助金额:
$ 60.36万 - 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
- 批准号:
9509566 - 财政年份:2014
- 资助金额:
$ 60.36万 - 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
- 批准号:
8801295 - 财政年份:2014
- 资助金额:
$ 60.36万 - 项目类别:
High-Density Recording and Stimulating Microelectrodes
高密度记录和刺激微电极
- 批准号:
8935966 - 财政年份:2014
- 资助金额:
$ 60.36万 - 项目类别:
Tunneling microfiber electrode arrays for stable neural recording
用于稳定神经记录的隧道微纤维电极阵列
- 批准号:
8807848 - 财政年份:2014
- 资助金额:
$ 60.36万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 60.36万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 60.36万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 60.36万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)