Task-Specific Compression for Biomedical Big Data

生物医学大数据的特定任务压缩

基本信息

  • 批准号:
    8874698
  • 负责人:
  • 金额:
    $ 47.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Contemporary biomedical research increasingly generates and uses very large datasets. As this seemingly unending supply of biomedical Big Data is collected, processed, and stored, a key challenge is maintaining and delivering this data efficiently. The challenges associated with Big Data are particularly prominent in digital pathology: A single digital whole slide image (WSI) requires a file size in the 2 to 10GB range. When an entire case is considered (typically between 4 to 30 different stains), the raw data size can exceed 100 GB. With imaging at different focal planes (z-stacks) and multispectral imaging becoming available, it is not unreasonable to expect that the raw data from a single case will reach several TBs in the near future. The slide volumes of a typical academic pathology department require round-the-clock operation of multiple scanners which can be loaded with hundreds of slides and can scan continuously. Thus, the volume of data that is expected to be generated by a fully digital pathology practice is enormous. The goal of this proposal is to solve this challenging problem. Our hypothesis is that it is possible to significantly improve the presentation of digital pathology images for accurate diagnoses by designing intelligent image compression schemes. We propose three Specific Aims to test this hypothesis: Aim 1: To develop and validate efficient and intelligent image compression techniques optimized based on the properties of the Human Visual System (HVS). These techniques will optimally tune the compression parameters such that desired visual quality is achieved for each and every image. Aim 2: To develop and validate a novel image compression paradigm where information which is most relevant to the task at hand is stored and transmitted preferentially. We propose to use Task-Specific Information (TSI) as a metric of image fidelity during compression. Aim 3: To develop a client-server framework that will allow interactive remote browsing of very high resolution pathology images over bandwidth-limited networks.
 描述(由申请人提供):当代生物医学研究越来越多地产生和使用非常大的数据集。随着生物医学大数据的收集、处理和存储,一个关键的挑战是有效地维护和交付这些数据。与大数据相关的挑战在数字病理学中尤为突出:单个数字全载玻片图像(WSI)需要2到10 GB的文件大小。当考虑整个病例(通常在4到30种不同的染色剂之间)时,原始数据大小可能超过100 GB。随着在不同焦平面(z堆栈)成像和多光谱成像变得可用,预期来自单个病例的原始数据在不久的将来将达到几个TB也不是不合理的。一个典型的学术病理学部门的载玻片量需要多个扫描仪的全天候操作,这些扫描仪可以装载数百个载玻片并可以连续扫描。因此,预期由完全数字化病理学实践生成的数据量是巨大的。 该提案的目的是解决 这个具有挑战性的问题。我们的假设是,它是可能的,以显着改善数字病理图像的准确诊断,通过设计智能图像压缩方案的介绍。我们提出了三个具体目标来测试这一假设:目标1:开发和验证有效的和智能的图像压缩技术优化的基础上人类视觉系统(HVS)的属性。这些技术将最佳地调整压缩参数,使得针对每一个图像实现期望的视觉质量。 目标二:开发和验证一种新的图像压缩范例,其中与手头任务最相关的信息被优先存储和传输。我们建议使用特定任务的信息(TSI)作为压缩过程中的图像保真度的度量。 目标三:开发一个客户端-服务器框架,允许通过带宽有限的网络交互式远程浏览非常高分辨率的病理图像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ali Bilgin其他文献

Ali Bilgin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ali Bilgin', 18)}}的其他基金

Task-Specific Compression for Biomedical Big Data
生物医学大数据的特定任务压缩
  • 批准号:
    9265807
  • 财政年份:
    2015
  • 资助金额:
    $ 47.25万
  • 项目类别:
Task-Specific Compression for Biomedical Big Data
生物医学大数据的特定任务压缩
  • 批准号:
    9070666
  • 财政年份:
    2015
  • 资助金额:
    $ 47.25万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 47.25万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 47.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了