Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
基本信息
- 批准号:8632422
- 负责人:
- 金额:$ 54.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-15 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingArchitectureBindingChromatinCodeComplexComplex Genetic TraitComputer softwareComputing MethodologiesDNADataData SetDevelopmentDiagnosticDiseaseEuropeanExplosionFrequenciesFunctional RNAFutureGene ExpressionGene FrequencyGenesGeneticGenetic MarkersGenetic RiskGenetic VariationGenotypeGoalsHeightHeritabilityHumanIndividualLifeLinkage DisequilibriumLipidsMedicalMethodsMicroarray AnalysisModelingMyocardial InfarctionPatient SelectionPatientsPatternPerformancePhenotypePopulationPopulation GeneticsPopulation HeterogeneityProteinsPublicationsRiskSamplingStatistical MethodsStatistical ModelsStudy modelsTestingTherapeutic InterventionTrainingVariantWorkbasecase controlcell typedata acquisitiondisorder riskexomeexome sequencinggenetic variantgenome sequencinggenome wide association studyhuman diseaseimprovedinterestnext generationpublic health relevancerare variantsimulationtraittranscription factor
项目摘要
Understanding the relationship between genotype and phenotype is the central goal of genetics. Available
heritability estimates for many human traits of medical relevance suggest that 30-80% of phenotypic variation
is due to underlying genetic variation. The ability to predict phenotypes based on genotypes is the ultimate test
of our understanding of complex trait genetics. Since the dawn of complex trait genetics in the early 20th
century, progress has been limited by the availability of genetic data in well-phenotyped populations. Now, due
to the extraordinary progress in technology, microarray genotyping datasets, exome sequencing datasets and
targeted sequencing datasets are available for large clinically phenotyped populations, and functional data is
becoming available. A future explosion of whole-genome sequencing data is also widely anticipated. This shifts
the focus from data acquisition to data interpretation and development of computational and statistical methods
for predicting phenotypes from genotypes and functional information. We propose to develop new methods for
predicting phenotypes from genotypes and apply these methods to newly collected data on human complex
traits of direct medical interest, including both quantitative and disease traits. Our work on phenotype prediction
will be informative about the allelic architecture of complex traits and will provide guidance for future genetic
studies. From a practical perspective, there is an ongoing debate on the potential of genetic diagnostics in
identification of individuals at elevated risk for specific complex diseases early in life. If successful, genetic
diagnostics may inform selection of patients for early therapeutic intervention. However, the practical utility of
genetics in evaluating risk of complex diseases has not been proven and is widely debated. We will rigorously
test the hypothesis of the utility of genotype-based phenotypic predictions.
In Specific Aim 1 we will develop and test new statistical methods for predicting phenotypes from microarray
genotyping data. We will investigate several model selection and shrinkage strategies. We will evaluate
whether it is more efficient to estimate contributions of individual markers independently or to fit all markers
simultaneously. In Specific Aim 2 we will improve polygenic prediction in populations of diverse ancestry. It
is important that medical progress not be limited to European populations. Our methods will generate
predictions across human populations, accounting for population differences in allele frequencies, rates of
allelic variation and patterns of linkage disequilibrium. In Specific Aim 3 we will develop and test statistical
methods for predicting phenotypes from sequencing data. Sequencing data provide a distinct set of statistical
challenges because they contain low-frequency and rare allelic variants, and often the effects of individual rare
variants cannot be estimated. In Specific Aim 4 we will incorporate functional data into methods for
phenotype prediction. We will investigate whether incorporation of functional data can improve phenotype
predictions from genetic data.
了解基因型和表型之间的关系是遗传学的中心目标。可用
对许多与医学相关的人类性状的遗传力估计表明,30 - 80%的表型变异
是由于潜在的遗传变异。根据基因型预测表型的能力是最终的考验
我们对复杂性状遗传学的理解。自20世纪初复杂性状遗传学出现以来,
世纪以来,进展一直受到表型良好人群遗传数据可用性的限制。现在由于
技术的非凡进步,微阵列基因分型数据集,外显子组测序数据集,
靶向测序数据集可用于大的临床表型人群,并且功能数据是
变得可用。全基因组测序数据的未来爆炸也被广泛预期。它会改变
从数据采集到数据解释,以及计算和统计方法的发展
用于从基因型和功能信息预测表型。我们建议开发新的方法,
从基因型中预测表型,并将这些方法应用于新收集的关于人类复杂
具有直接医学意义的性状,包括数量性状和疾病性状。我们在表型预测方面的工作
将提供有关复杂性状的等位基因结构的信息,并将为未来的遗传学研究提供指导。
问题研究从实践的角度来看,目前正在就遗传诊断在以下方面的潜力进行辩论:
识别生命早期患有特定复杂疾病的高风险个体。如果成功,遗传
诊断可以为选择早期治疗干预的患者提供信息。然而,
遗传学在评估复杂疾病风险方面的作用尚未得到证实,并受到广泛辩论。我们将严格
检验基于基因型的表型预测的实用性假设。
在具体目标1中,我们将开发和测试新的统计方法,用于预测微阵列表型
基因分型数据。我们将研究几种模型选择和收缩策略。我们将评估
独立估计单个标记的贡献或拟合所有标记是否更有效
同步在具体目标2中,我们将改进不同祖先群体中的多基因预测。它
重要的是,医学进步不仅限于欧洲人口。我们的方法将产生
在人群中的预测,占等位基因频率的人口差异,
等位基因变异和连锁不平衡模式。在具体目标3中,我们将开发和测试统计
从测序数据预测表型的方法。测序数据提供了一组独特的统计学特征,
挑战,因为它们含有低频率和罕见的等位基因变异,并且通常是个体罕见的影响,
变量无法估计。在具体目标4中,我们将把函数数据纳入方法中,
表型预测我们将调查是否纳入功能数据可以改善表型
基因数据的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAMIL SUNYAEV其他文献
SHAMIL SUNYAEV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAMIL SUNYAEV', 18)}}的其他基金
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10441144 - 财政年份:2018
- 资助金额:
$ 54.33万 - 项目类别:
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10553953 - 财政年份:2018
- 资助金额:
$ 54.33万 - 项目类别:
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10152624 - 财政年份:2018
- 资助金额:
$ 54.33万 - 项目类别:
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10623515 - 财政年份:2018
- 资助金额:
$ 54.33万 - 项目类别:
Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
- 批准号:
8862508 - 财政年份:2014
- 资助金额:
$ 54.33万 - 项目类别:
Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
- 批准号:
9245712 - 财政年份:2014
- 资助金额:
$ 54.33万 - 项目类别:
Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
- 批准号:
9031772 - 财政年份:2014
- 资助金额:
$ 54.33万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 54.33万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 54.33万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 54.33万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 54.33万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 54.33万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 54.33万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 54.33万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 54.33万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 54.33万 - 项目类别:
Standard Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 54.33万 - 项目类别:
Fellowship














{{item.name}}会员




