Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
基本信息
- 批准号:9245712
- 负责人:
- 金额:$ 49.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-15 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAllelesArchitectureBindingChromatinCodeComplexComplex Genetic TraitComputer softwareComputing MethodologiesDNADataData AnalysesData SetDevelopmentDiagnosticDiseaseEuropeanExplosionFrequenciesFutureGene ExpressionGene FrequencyGenesGeneticGenetic MarkersGenetic RiskGenetic VariationGenetic studyGenotypeGoalsHeightHeritabilityHumanIndividualLifeLinkage DisequilibriumLipidsMedicalMethodsModelingMyocardial InfarctionPatient SelectionPatientsPatternPerformancePhenotypePopulationPopulation GeneticsPopulation HeterogeneityProteinsPublicationsRiskSamplingStatistical MethodsStatistical ModelsStudy modelsTechnologyTestingTherapeutic InterventionTrainingUntranslated RNAVariantWorkbasecase controlcell typeclinical phenotypedata acquisitiondisorder riskexomeexome sequencinggenetic predictorsgenetic variantgenome sequencinggenome wide association studyhuman diseaseimprovedinterestnext generationpredictive markerpublic health relevancerare variantsimulationtargeted sequencingtraittranscription factorwhole genome
项目摘要
DESCRIPTION (provided by applicant): Understanding the relationship between genotype and phenotype is the central goal of genetics. Available heritability estimates for many human traits of medical relevance suggest that 30-80% of phenotypic variation is due to underlying genetic variation. The ability to predict phenotypes based on genotypes is the ultimate test of our understanding of complex trait genetics. Since the dawn of complex trait genetics in the early 20th century, progress has been limited by the availability of genetic data in well-phenotyped populations. Now, due to the extraordinary progress in technology, microarray genotyping datasets, exome sequencing datasets and targeted sequencing datasets are available for large clinically phenotyped populations, and functional data is becoming available. A future explosion of whole-genome sequencing data is also widely anticipated. This shifts the focus from data acquisition to data interpretation and development of computational and statistical methods for predicting phenotypes from genotypes and functional information. We propose to develop new methods for predicting phenotypes from genotypes and apply these methods to newly collected data on human complex traits of direct medical interest, including both quantitative and disease traits. Our work on phenotype prediction will be informative about the allelic architecture of complex traits and will provide guidance for future genetic studies. From a practical perspective, there is an ongoing debate on the potential of genetic diagnostics in identification of individuals at elevated risk for specific complex diseases early in life. If successful, genetic diagnostics may inform selection of patients for early therapeutic intervention. However, the practical utility of genetics in evaluating risk of complex diseases has
not been proven and is widely debated. We will rigorously test the hypothesis of the utility of genotype-based phenotypic predictions. In Specific Aim 1 we will develop and test new statistical methods for predicting phenotypes from microarray genotyping data. We will investigate several model selection and shrinkage strategies. We will evaluate whether it is more efficient to estimate contributions of individual markers independently or to fit all markers simultaneously. In Specific Aim 2 we will improve polygenic prediction in populations of diverse ancestry. It is important that medical progress not be limited to European populations. Our methods will generate predictions across human populations, accounting for population differences in allele frequencies, rates of allelic variation and patterns of linkage disequilibriu. In Specific Aim 3 we will develop and test statistical methods for predicting phenotypes from sequencing data. Sequencing data provide a distinct set of statistical challenges because they contain low-frequency and rare allelic variants, and often the effects of individual rare variants cannot be estimated. In Specific Aim 4 we will incorporate functional data into methods for phenotype prediction. We will investigate whether incorporation of functional data can improve phenotype predictions from genetic data.
描述(由申请人提供):了解基因型和表型之间的关系是遗传学的中心目标。许多人类医学相关性状的遗传力估计表明,30-80%的表型变异是由于潜在的遗传变异。基于基因型预测表型的能力是对我们理解复杂性状遗传学的最终考验。自世纪初复杂性状遗传学出现以来,由于表型良好的群体中遗传数据的可用性,进展受到限制。现在,由于技术的非凡进步,微阵列基因分型数据集,外显子组测序数据集和靶向测序数据集可用于大型临床表型人群,功能数据也变得可用。全基因组测序数据的未来爆炸也被广泛预期。这将重点从数据采集转移到数据解释和开发用于从基因型和功能信息预测表型的计算和统计方法。我们建议开发新的方法,从基因型预测表型,并将这些方法应用于新收集的数据,人类复杂的性状的直接医学利益,包括数量和疾病性状。我们在表型预测方面的工作将为复杂性状的等位基因结构提供信息,并为未来的遗传研究提供指导。从实践的角度来看,有一个正在进行的辩论的潜力,遗传诊断在识别个人在生命早期的特定复杂疾病的高风险。如果成功的话,基因诊断可以为选择早期治疗干预的患者提供信息。然而,遗传学在评估复杂疾病风险方面的实际效用,
尚未被证实,并被广泛讨论。我们将严格检验基于基因型的表型预测的实用性的假设。在具体目标1中,我们将开发和测试新的统计方法,用于从微阵列基因分型数据预测表型。我们将研究几种模型选择和收缩策略。我们将评估独立估计单个标记的贡献或同时拟合所有标记是否更有效。在具体目标2中,我们将改进不同祖先群体中的多基因预测。重要的是,医学进步不仅限于欧洲人口。我们的方法将产生跨人群的预测,解释等位基因频率,等位基因变异率和连锁不平衡模式的人群差异。在具体目标3中,我们将开发和测试从测序数据预测表型的统计方法。测序数据提供了一组独特的统计挑战,因为它们包含低频率和罕见的等位基因变异,并且通常无法估计单个罕见变异的影响。在具体目标4中,我们将把功能数据纳入表型预测方法。我们将研究是否纳入功能数据可以提高遗传数据的表型预测。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiethnic polygenic risk scores improve risk prediction in diverse populations.
- DOI:10.1002/gepi.22083
- 发表时间:2017-12
- 期刊:
- 影响因子:2.1
- 作者:Márquez-Luna C;Loh PR;South Asian Type 2 Diabetes (SAT2D) Consortium;SIGMA Type 2 Diabetes Consortium;Price AL
- 通讯作者:Price AL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAMIL SUNYAEV其他文献
SHAMIL SUNYAEV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAMIL SUNYAEV', 18)}}的其他基金
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10441144 - 财政年份:2018
- 资助金额:
$ 49.16万 - 项目类别:
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10553953 - 财政年份:2018
- 资助金额:
$ 49.16万 - 项目类别:
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10152624 - 财政年份:2018
- 资助金额:
$ 49.16万 - 项目类别:
The origin, the function and the phenotypic impact of human alleles
人类等位基因的起源、功能和表型影响
- 批准号:
10623515 - 财政年份:2018
- 资助金额:
$ 49.16万 - 项目类别:
Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
- 批准号:
8632422 - 财政年份:2014
- 资助金额:
$ 49.16万 - 项目类别:
Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
- 批准号:
8862508 - 财政年份:2014
- 资助金额:
$ 49.16万 - 项目类别:
Improving Polygenic Prediction using Next-Generation Data Sets
使用下一代数据集改进多基因预测
- 批准号:
9031772 - 财政年份:2014
- 资助金额:
$ 49.16万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 49.16万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 49.16万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 49.16万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 49.16万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 49.16万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 49.16万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 49.16万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 49.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 49.16万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 49.16万 - 项目类别: