Biomechanics of early mammalian cardiogenesis

早期哺乳动物心脏发生的生物力学

基本信息

  • 批准号:
    8969458
  • 负责人:
  • 金额:
    $ 3.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Congenital heart defects are among the most common birth defects and the leading cause of death in children born with congenital defects. Understanding how the early embryonic heart functions and what regulatory mechanisms are involved in early cardiogenesis is highly important for advancement of heart defects research. Biomechanical stimuli, including blood flow and heart contraction, are important regulators of cardiovascular development. Thus, defining how these mechanisms coordinate mammalian heart tube function and morphogenesis is critically important for the diagnosis of congenital heart defects and for the development of new therapeutic interventions to treat/prevent them. Such analysis can only be performed through live high- resolution embryonic imaging. At present, nearly nothing is known about the biomechanics of the early mammalian heart. In this proposal, we will not only identify key relationships between wall motion and fluid movement needed to characterize the pump, but we will also utilize mouse mutants and embryonic interventions to elucidate the mechanism by which valveless mammalian heart tube propels blood. Traditionally, it has been believed that the early heart tube uses peristalsis to move blood through the heart and early vessels. However, more recently, an alternative theory has emerged that the heart tube functions as a Liebau pump, which works by the means of an asymmetrically-located, single, active compression site and the generation of bidirectional elastic waves through the tube. There is still controversy among researchers as to which of these two mechanisms better describes the heart tube, and further studies are needed to fully evaluate the early heart pump. Also, studies to understand the heart pump have never been performed in mammalian embryos, and the mechanisms that regulate early mammalian heart tube function may not fully replicate those of avians or teleosts. The major hypothesis of this project is that early mammalian embryonic heart tube acts neither as a peristaltic pump nor as a classical Liebau pump with a single point of compression, though it utilizes suction mechanism and functions via resonance of contractile waves from multiple sites. We propose to directly and unambiguously assess this complex, dynamic process by direct visualization and analysis of the heartbeat and blood flow during embryonic development using the live OCT mouse embryo imaging approach which we developed. This proposal will provide novel highly valuable quantitative information about the pumping mechanism of the early mammalian heart tube. It will set a basis for a broad range of research projects on live dynamic analysis of mammalian cardiogenesis, morphogenesis and teratology, contributing to better understanding, prevention and treatment of cardiac birth defects and embryonic failures in humans.
描述(由申请人提供):先天性心脏缺陷是最常见的出生缺陷之一,也是先天性缺陷儿童死亡的主要原因。了解早期胚胎心脏的功能及其调控机制对推进心脏缺陷研究具有重要意义。包括血流和心脏收缩在内的生物力学刺激是心血管发育的重要调节因子。因此,确定这些机制如何协调哺乳动物心管功能和形态发生对于先天性心脏缺陷的诊断和开发新的治疗干预措施来治疗/预防它们至关重要。这种分析只能通过活体高分辨率胚胎成像进行。目前,对早期哺乳动物心脏的生物力学几乎一无所知。在本研究中,我们不仅将确定壁运动和表征泵所需的流体运动之间的关键关系,而且还将利用小鼠突变体和胚胎干预来阐明无瓣膜哺乳动物心脏管推动血液的机制。传统上,人们一直认为早期的心脏管利用蠕动来移动血液

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irina Larina其他文献

Irina Larina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irina Larina', 18)}}的其他基金

In vivo analysis of mammalian fertilization
哺乳动物受精的体内分析
  • 批准号:
    10311522
  • 财政年份:
    2019
  • 资助金额:
    $ 3.38万
  • 项目类别:
In vivo analysis of mammalian fertilization
哺乳动物受精的体内分析
  • 批准号:
    10078862
  • 财政年份:
    2019
  • 资助金额:
    $ 3.38万
  • 项目类别:
Biomechanics of early mammalian cardiogenesis
早期哺乳动物心脏发生的生物力学
  • 批准号:
    10428362
  • 财政年份:
    2018
  • 资助金额:
    $ 3.38万
  • 项目类别:
Biomechanics of early mammalian cardiogenesis
早期哺乳动物心脏发生的生物力学
  • 批准号:
    10200108
  • 财政年份:
    2018
  • 资助金额:
    $ 3.38万
  • 项目类别:
Biomechanics of early mammalian cardiogenesis
早期哺乳动物心脏发生的生物力学
  • 批准号:
    9567653
  • 财政年份:
    2018
  • 资助金额:
    $ 3.38万
  • 项目类别:
Biomechanics of early mammalian cardiogenesis
早期哺乳动物心脏发生的生物力学
  • 批准号:
    8547440
  • 财政年份:
    2013
  • 资助金额:
    $ 3.38万
  • 项目类别:
Biomechanics of early mammalian cardiogenesis
早期哺乳动物心脏发生的生物力学
  • 批准号:
    8707553
  • 财政年份:
    2013
  • 资助金额:
    $ 3.38万
  • 项目类别:

相似海外基金

CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
  • 批准号:
    2340080
  • 财政年份:
    2024
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Continuing Grant
Cruising the whale superhighway: The evolution, biomechanics, and ecological drivers of migration in cetaceans
巡航鲸鱼高速公路:鲸目动物迁徙的进化、生物力学和生态驱动因素
  • 批准号:
    NE/Y000757/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Research Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
  • 批准号:
    2413182
  • 财政年份:
    2024
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
  • 批准号:
    DP240101449
  • 财政年份:
    2024
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Discovery Projects
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
  • 批准号:
    2338676
  • 财政年份:
    2024
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
  • 批准号:
    2344385
  • 财政年份:
    2024
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
  • 批准号:
    2341368
  • 财政年份:
    2024
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Biomechanics of the Swimming and Chemotaxis of the Leptospiraceae
钩端螺旋体科游泳和趋化性的生物力学
  • 批准号:
    2309442
  • 财政年份:
    2023
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Conference: Gordon Research Conference on Biomechanics in Vascular Biology and Disease; South Hadley, Massachusetts; 6-11 August 2023
会议:戈登血管生物学和疾病生物力学研究会议;
  • 批准号:
    2316830
  • 财政年份:
    2023
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
Discovering the Biomechanics of Filamentous Fungi and their Hyphae
发现丝状真菌及其菌丝的生物力学
  • 批准号:
    2233973
  • 财政年份:
    2023
  • 资助金额:
    $ 3.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了