Taking advanced diffusion imaging to the clinic for pediatric patients with ADHD
将先进的扩散成像技术应用于临床治疗多动症儿科患者
基本信息
- 批准号:8701401
- 负责人:
- 金额:$ 44.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-18 至 2015-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdolescentAdoptionAffectAlgorithmsAnisotropyApplications GrantsArchitectureAttention deficit hyperactivity disorderBiological Neural NetworksBrainBrain DiseasesBrain regionChildChildhoodClinicClinicalClinical ResearchComplexComputational algorithmDataData SetDiffusionDiffusion Magnetic Resonance ImagingEvaluationFiberFunctional Magnetic Resonance ImagingGoalsGraphImageImaging TechniquesJointsMRI ScansMapsMeasurementMeasuresMental disordersMethodsModalityMorphologic artifactsMotionOutcomePathologyPathway interactionsPatientsPharmaceutical PreparationsPopulationPropertyProtocols documentationResearch PersonnelResolutionRestSamplingScanningSchemeSignal TransductionSliceTechniquesTechnologyTestingTimeValidationWorkbaseimage reconstructionimaging modalityimprovedin vivonervous system disorderneural circuitnon-compliancenovelpediatric patientspublic health relevancereconstructionrelating to nervous systemtreatment strategywhite matter
项目摘要
DESCRIPTION (provided by applicant): In this grant application, we propose to develop clinicaly feasible methods for the acquisition and analysis of advanced diffusion magnetic resonance imaging (dMRI) of pediatric patients and apply it to study micro and macro level pathology in attention-deficit hyperactivity-disorder (ADHD). Advanced dMRI techniques can provide details about the layout of white matter pathways in the brain, that are not possible using the current clinical standard of diffusion tensor imaging (DTI). However, these advanced protocols require long scan times and any motion during this time results in artifacts and loss of signal. As a result, dMRI acquisition of children becomes a challenging task, particularly if they are hyperactive (as in ADHD). In this grant application, we propose several novel algorithms for fast acquisition and reconstruction of advanced dMRI protocols. In particular, we will use our multi-slice acquisition protocol (as opposed to the standard single-slice acquisition) along with a
scheme to recover dMRI signals from very few measurements. This will dramatically reduce scan time and make it possible to obtain advanced dMRI scans of pediatric patients (in a clinic). We will validate our methods on several test subjects and then apply them to the study of children and adolescents with ADHD. In particular, we will analyze global connectivity properties of the anatomical neural networks in ADHD along with local diffusion based microstructural properties that may be affected due to pathology. Thus, the improvements suggested in this proposal will bring advanced dMRI protocols to the clinic and allow us to quantify micro and macro level abnormalities in patients with any type of psychiatric or neurological disorder.
描述(由申请人提供):在这项资助申请中,我们建议开发临床可行的方法,用于采集和分析儿科患者的高级弥散磁共振成像(dMRI),并将其应用于研究注意力缺陷多动障碍(ADHD)的微观和宏观病理学。先进的dMRI技术可以提供有关大脑中白色物质通路的布局的细节,这是使用当前的扩散张量成像(DTI)临床标准所不可能实现的。然而,这些高级协议需要长的扫描时间,并且在此期间的任何运动都会导致伪影和信号丢失。因此,儿童的dMRI采集成为一项具有挑战性的任务,特别是如果他们是多动症(如ADHD)。在本申请中,我们提出了几种新的算法,用于快速采集和重建先进的dMRI协议。特别是,我们将使用我们的多切片采集协议(与标准的单切片采集相反),沿着
从很少的测量中恢复dMRI信号的方案。这将大大减少扫描时间,并使其能够获得儿科患者的高级dMRI扫描(在诊所中)。我们将在几个测试对象上验证我们的方法,然后将其应用于ADHD儿童和青少年的研究。特别是,我们将分析全球的解剖神经网络的连接特性,在多动症沿着与局部扩散为基础的微观结构特性,可能会受到影响,由于病理。因此,本提案中建议的改进将为临床带来先进的dMRI方案,并使我们能够量化任何类型的精神或神经系统疾病患者的微观和宏观水平异常。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yogesh Rathi其他文献
Yogesh Rathi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yogesh Rathi', 18)}}的其他基金
Next generation in-vivo diffusion imaging at submillimeter resolution
亚毫米分辨率的下一代体内扩散成像
- 批准号:
10378714 - 财政年份:2020
- 资助金额:
$ 44.01万 - 项目类别:
Next generation in-vivo diffusion imaging at submillimeter resolution
亚毫米分辨率的下一代体内扩散成像
- 批准号:
10291618 - 财政年份:2020
- 资助金额:
$ 44.01万 - 项目类别:
Taking advanced diffusion imaging to the clinic for pediatric patients with ADHD
将先进的扩散成像技术应用于临床治疗多动症儿科患者
- 批准号:
8973579 - 财政年份:2012
- 资助金额:
$ 44.01万 - 项目类别:
Taking advanced diffusion imaging to the clinic for pediatric patients with ADHD
将先进的扩散成像技术应用于临床治疗多动症儿科患者
- 批准号:
8547101 - 财政年份:2012
- 资助金额:
$ 44.01万 - 项目类别:
Taking advanced diffusion imaging to the clinic for pediatric patients with ADHD
将先进的扩散成像技术应用于临床治疗多动症儿科患者
- 批准号:
8456617 - 财政年份:2012
- 资助金额:
$ 44.01万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 44.01万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 44.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 44.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 44.01万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 44.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 44.01万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 44.01万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 44.01万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 44.01万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 44.01万 - 项目类别:
Standard Grant