Highly Multiplexed FISH for In Situ Genomics

用于原位基因组学的高度多重 FISH

基本信息

  • 批准号:
    8810861
  • 负责人:
  • 金额:
    $ 24.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-08 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall objective of this application is to design and develop a technology permitting highly- multiplexed fluorescence in situ hybridization using probes from a broad library of genes. We will focus on genes whose copy number variation represents possible actionable therapeutic targets. We will build, test and validate an optimal assay platform leveraging our long-standing experience implementing diagnostic tests for chromosomal abnormalities in cancer. This objective will be achieved in two aims: Aim I. Develop a robust, reproducible assay for constructing a library of at least 50 locus-specific DNA sequence probes. We will use a combinatorial labeling approach in which each probe is bar-coded with a combination of two or three fluorophores per probe, allowing for up to 120 DNA probes to be simultaneously hybridized. We will develop an imaging system to decode the combinatorial label, record, quantify and analyze the obtained data. Aim II. We will begin to test the clinical utility of the assay by screening for actionable gene copy number alterations in surgical biopsy specimens and in isolated circulating tumor cells (CTCs). The development of this technology will allow us to get closer to address the question of whether patient-specific dynamics of tumor heterogeneity underlie variation in response to treatment and whether the evaluation of CTCs copy number profile in the follow up of treatment can predict response to therapy. This project will serve as a model for development and clinical implementation of diagnostics for the benefit of patients, and will be used to disseminate knowledge and expertise to the clinical cancer diagnostic field in general.
描述(由申请人提供):本申请的总体目标是设计和开发一种技术,允许使用广泛基因文库中的探针进行高复用荧光原位杂交。我们将重点关注拷贝数变异代表可能可行的治疗靶点的基因。我们将利用我们在癌症染色体异常诊断测试方面的长期经验,建立、测试和验证一个最佳的分析平台。这一目标将在两个目标中实现:目标1 .开发一个强大的,可重复的试验,用于构建至少50个位点特异性DNA序列探针的文库。我们将使用组合标记方法,其中每个探针与每个探针的两个或三个荧光团的组合条形码,允许多达120个DNA探针同时杂交。我们将开发一个成像系统来解码组合标签,记录,量化和分析获得的数据。目的二世。我们将通过筛选手术活检标本和分离的循环肿瘤细胞(ctc)中可操作的基因拷贝数改变来开始测试该分析的临床应用。这项技术的发展将使我们更接近于解决以下问题:肿瘤异质性的患者特异性动态是否构成对治疗反应变化的基础,以及在治疗随访中对ctc拷贝数谱的评估是否可以预测对治疗的反应。该项目将作为发展和临床实施诊断的典范,以造福患者,并将用于向临床癌症诊断领域传播知识和专业知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anthony John Iafrate其他文献

Lynch syndrome screening in endometrial cancer patients with immunohistochemistry: A single center experience
  • DOI:
    10.1016/j.ygyno.2014.11.058
  • 发表时间:
    2015-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    <u>Roberto</u> <u>Vargas</u>;J. Alejandro Rauh-Hain;Anthony John Iafrate;Daniel Chung;Leif Ellisen;Kristen Shannon;Linda Rodgers;Esther Oliva;John Schorge
  • 通讯作者:
    John Schorge
High Throughput Microfluidics Platform to Assess Synthetic Lethality and Novel Therapeutic Drug Combinations
  • DOI:
    10.1182/blood-2023-190651
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Anthony Soltis;Boryana Zhelyazkova;Pascal Drane;Efstathios Eleftheriadis;Andrew Ventresco;David Weitz;Anthony John Iafrate;Arlinda Lee
  • 通讯作者:
    Arlinda Lee
SARS-CoV-2 Vaccine Response Following Five Total Vaccine Doses in Adult Patients with Predominantly Antibody Deficiency (PAD)
主要抗体缺乏症(PAD)成年患者接种五剂全剂量新冠病毒疫苗后的疫苗反应
  • DOI:
    10.1016/j.jaci.2023.11.785
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    AHMED ELMOURSI;Anna Zhang;Daniel Digiacomo;Baijun Zhou;Megha Tandon;Joseph Hong;Nancy Yang;Mei-Sing Ong;Anand Dighe;Cristhian Berrios;Mark Poznansky;Anthony John Iafrate;Vivek Naranbhai;Alejandro Balazs;Shiv Pillai;Jocelyn Farmer;Sara Barmettler
  • 通讯作者:
    Sara Barmettler

Anthony John Iafrate的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anthony John Iafrate', 18)}}的其他基金

Highly Multiplexed FISH for In Situ Genomics
用于原位基因组学的高度多重 FISH
  • 批准号:
    9065528
  • 财政年份:
    2015
  • 资助金额:
    $ 24.51万
  • 项目类别:
Highly Multiplexed FISH for In Situ Genomics
用于原位基因组学的高度多重 FISH
  • 批准号:
    9248273
  • 财政年份:
    2015
  • 资助金额:
    $ 24.51万
  • 项目类别:
Predictive biomarker development in lung cancer: ROS1 chromosomal rearrangements
肺癌预测生物标志物的发展:ROS1染色体重排
  • 批准号:
    8166470
  • 财政年份:
    2011
  • 资助金额:
    $ 24.51万
  • 项目类别:
Predictive biomarker development in lung cancer: ROS1 chromosomal rearrangements
肺癌预测生物标志物的发展:ROS1染色体重排
  • 批准号:
    8298508
  • 财政年份:
    2011
  • 资助金额:
    $ 24.51万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了