Multi-Tracer PET Tumor Imaging

多示踪剂 PET 肿瘤成像

基本信息

  • 批准号:
    8828583
  • 负责人:
  • 金额:
    $ 33.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-01-01 至 2018-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): One of the greatest strengths of positron emission tomography (PET) is the ability to image any of a number of molecular or physiologic targets using different radiotracers. The clinical utility of PET is well-established for cancer detection and staging. The development of new tracers for imaging metabolism, proliferation, blood flow and numerous other molecular targets offers almost unlimited potential for image- guided personalized medicine. However, much of this potential remains unrealized because current technology permits only one PET tracer to be imaged at a time-multiple scanning sessions need to be scheduled, often on different days, resulting in high costs, image alignment issues, and a long and onerous experience for the patient. We have shown that 2-3 PET tracers can be reliably imaged in a single scan, where imaging results for each tracer are recovered using "signal-separation" image processing algorithms. These new technologies have now advanced to the point where they are ready to be translated and distributed to end users for widespread research use. This translation will require advances and refinements that make the new imaging techniques easy to use by PET technologists on a routine basis, and moreover the algorithms must be incorporated into software medical devices that meet regulatory and industry requirements. This project will address these issues through continued scientific study closely coupled with software product development through a partnership between the University of Utah and MultiFunctional Imaging (MFI). Scientific advances and algorithm refinements will be performed under documented design and quality control systems, enabling immediate and rapid incorporation of these technologies into a software medical device package (MFI-Oncology). Successful translation of these emerging technologies will be demonstrated by transitioning ongoing clinical research studies at Huntsman Cancer Institute to single-scan multi-tracer imaging. The new MFI-Oncology software will then be widely distributed for research use under end user's IRB-approved protocols. Ultimately, this will enable clinical research studies at multiple institutions to use rapid multi-tracer PET/CT scanning, establishing this new research tool and accumulating data on efficacy for future clinical use.
描述(由申请人提供):正电子发射断层扫描(PET)的最大优势之一是能够使用不同的放射性示踪剂对许多分子或生理靶点进行成像。PET在癌症检测和分期方面的临床用途已得到证实。用于成像代谢、增殖、血流和许多其他分子靶点的新示踪剂的开发为图像引导的个性化医学提供了几乎无限的潜力。然而,这种潜力中的大部分仍然没有实现,因为当前技术仅允许一次对一种PET示踪剂进行成像-需要安排多个扫描会话,通常在不同的日子,导致高成本、图像对准问题以及患者的长期和繁重的经历。我们已经表明,2-3 PET示踪剂可以可靠地成像在一个单一的扫描,其中每个示踪剂的成像结果恢复使用“信号分离”的图像处理算法。这些新技术现在已经发展到可以翻译并分发给最终用户以供广泛研究使用的程度。这种转换将需要进步和改进,使新的成像技术易于PET技术人员在常规基础上使用,此外,算法必须纳入符合法规和行业要求的软件医疗器械中。该项目将通过犹他州大学和多功能成像(MFI)之间的合作关系,通过与软件产品开发密切结合的持续科学研究来解决这些问题。科学进步和算法改进将在记录的设计和质量控制系统下进行,从而能够将这些技术立即快速地纳入医疗器械软件包(MFI-肿瘤学)。这些新兴技术的成功转化将通过将亨斯迈癌症研究所正在进行的临床研究过渡到单扫描多示踪剂成像来证明。新的MFI-Oncology软件将根据最终用户的IRB批准的方案广泛分发用于研究。最终,这将使多个机构的临床研究能够使用快速多示踪剂PET/CT扫描,建立这种新的研究工具,并为未来的临床使用积累疗效数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan J Kadrmas其他文献

Dan J Kadrmas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan J Kadrmas', 18)}}的其他基金

Dual-Tracer PET Tumor Imaging
双示踪剂 PET 肿瘤成像
  • 批准号:
    10152095
  • 财政年份:
    2020
  • 资助金额:
    $ 33.58万
  • 项目类别:
Dual-Tracer PET Tumor Imaging
双示踪剂 PET 肿瘤成像
  • 批准号:
    10546374
  • 财政年份:
    2020
  • 资助金额:
    $ 33.58万
  • 项目类别:
Optimized PET Reconstruction for Cancer Detection
用于癌症检测的优化 PET 重建
  • 批准号:
    8427327
  • 财政年份:
    2012
  • 资助金额:
    $ 33.58万
  • 项目类别:
Optimized PET Reconstruction for Cancer Detection
用于癌症检测的优化 PET 重建
  • 批准号:
    8229378
  • 财政年份:
    2012
  • 资助金额:
    $ 33.58万
  • 项目类别:
Multi-tracer PET Tumor Imaging
多示踪剂 PET 肿瘤成像
  • 批准号:
    8037722
  • 财政年份:
    2009
  • 资助金额:
    $ 33.58万
  • 项目类别:
Multi-Tracer PET Tumor Imaging
多示踪剂 PET 肿瘤成像
  • 批准号:
    8696534
  • 财政年份:
    2009
  • 资助金额:
    $ 33.58万
  • 项目类别:
Multi-tracer PET Tumor Imaging
多示踪剂 PET 肿瘤成像
  • 批准号:
    7582583
  • 财政年份:
    2009
  • 资助金额:
    $ 33.58万
  • 项目类别:
Multi-tracer PET Tumor Imaging
多示踪剂 PET 肿瘤成像
  • 批准号:
    8197563
  • 财政年份:
    2009
  • 资助金额:
    $ 33.58万
  • 项目类别:
Statistical PET Image Reconstruction
统计 PET 图像重建
  • 批准号:
    6920909
  • 财政年份:
    2005
  • 资助金额:
    $ 33.58万
  • 项目类别:
Statistical PET Image Reconstruction
统计 PET 图像重建
  • 批准号:
    7230464
  • 财政年份:
    2005
  • 资助金额:
    $ 33.58万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 33.58万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 33.58万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 33.58万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了