Improving Intensive Care Medication Safety through EHR-basedAlgorithms.
通过基于 EHR 的算法提高重症监护用药安全。
基本信息
- 批准号:9010480
- 负责人:
- 金额:$ 34.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAcuteAddressAdmission activityAdultAlgorithmsBedsCaringCensusesChronicClinical DataClinical PharmacistsCritical CareDataData SourcesDetectionDevicesElectronic Health RecordElectronicsEnvironmentEventFacultyGuidelinesHospitalsInformation SystemsInformation TechnologyInfusion PumpsInpatientsInstitutionIntensive CareIntensive Care UnitsInterceptInterventionKnowledgeLength of StayLiquid substanceManualsMedicalMedical ErrorsMedical InformaticsMedical centerMethodologyMethodsMonitorNewborn InfantOperative Surgical ProceduresParenteral NutritionPatientsPerformancePharmaceutical PreparationsPhysiciansPumpReportingResearchResearch InfrastructureRiskSafetyScanningSystemTechniquesTechnologyTimeUniversitiesWorkauthoritybaseclinical careclinical practicecomputerizedimprovedneonatenovelpatient safetyprospectivesafety studysoftware systemstoolusabilityuser-friendly
项目摘要
DESCRIPTION (provided by applicant): In the field of patient safety, the paucity of systematic research is a critical barrier to progress. Notably missing are studies that meticulously investigate Electronic Health Records (EHR) and information technology in detecting intensive care-related errors. Our proposed study seeks to address an identified gap in the current knowledge of safety research by evaluating the usefulness of commercial IT systems and EHRs in reducing medical errors.
In our study we seek to shift medication safety research from retrospective error identification towards a real-time automated and computerized approach to achieve a more comprehensive patient safety paradigm. The central hypothesis of our work is that by identifying discrepancies between medication order and administration data sources, we can detect and mitigate medication-related errors. In our study, we will 1) Use real time analysis to detect and intercept medication and parenteral nutrition (PN) administration errors identified by our recently developed Electronic Health Record (EHR) content-based algorithms (Aim 1); 2) Confirm performance of the algorithms in an external institution (Aim 2); and 3) Create new algorithms to identify smart pump infusion errors (Aim 3). By systematically detecting and intercepting medication and PN errors, we will shift medication safety from passive reporting of errors to proactive identification and mitigation of unsafe care.
In Aim 1 we will reduce the time patients are at risk for harm through prospective identification o ameliorable medication and PN administration errors using CCHMC-developed medication administration error (MAE) detection algorithms. Using our EHR-based algorithms, we will detect administration errors in real-time and notify clinicians to decrease the time patients are a risk for harm. In Aim 2, we will evaluate the generalizability of the CCHMC-developed EHR-based medication administration error (MAE) detection algorithms by applying the algorithms to retrospective NICU and MICU data at an external institution. We will also develop a user-friendly demonstration package to facilitate usability of the algorithms and enhance the ability to observe their benefits. In Aim 3, we will develop novel algorithms to detect errors in smart pump use and evaluate system-level factors that contribute to pump errors. By detecting smart pump errors, the final step in medication and fluid administration, we will further reduce the rates of dangerous administration errors targeted in Aims 1 and 2.
Our proposed work has the potential to accomplish a paradigm shift in the methods of patient safety research and clinical practice. The study is a fundamental step towards automating patient safety monitoring on a large scale and improving error identification and patient safety in
the intensive care environment for millions of patients every year.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Steven Kirkendall其他文献
Eric Steven Kirkendall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Steven Kirkendall', 18)}}的其他基金
Improving Intensive Care Medication Safety through EHR-basedAlgorithms.
通过基于 EHR 的算法提高重症监护用药安全。
- 批准号:
9333449 - 财政年份:2015
- 资助金额:
$ 34.93万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 34.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 34.93万 - 项目类别:
Operating Grants