Supplementing Survey-Based Analyses of Group Vaccination Narratives and Behaviors Using Social Media
使用社交媒体补充基于调查的群体疫苗接种叙述和行为分析
基本信息
- 批准号:8801020
- 负责人:
- 金额:$ 29.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAdultAfrican AmericanAgeAttitudeBehaviorCategoriesCommunitiesComputersDataData QualityData SetData SourcesDigit structureEngineeringFutureHealthHealth CommunicationHealth SciencesHealth behaviorHispanicsInfluenza vaccinationInternetLiteratureMarketingMeasurementMinorityModelingNatural Language ProcessingPoliciesPopulationProcessPublic HealthResearchResearch PersonnelSamplingScholarshipScientistSocial SciencesSurvey MethodologySurveysTechniquesTelephoneTestingTimeTranscendVaccinationVaccinesWorkbasecareercomputer sciencecomputerized toolscostdata miningdemographicsexperienceimprovedinnovationmembermodel buildingnovelpublic health relevanceresearch studyseasonal influenzasocialsocial groupsocial science researchtheoriestoolweb siteyoung adult
项目摘要
DESCRIPTION (provided by applicant): High quality, real-time data is essential in public health crises. Yet, traditional survey methods that rely on random-digit-dialing are expensive, difficult to deploy instantly, and fail to sample hard-to-reach populations without landline telephones, such as young adults (18-30) and minorities. In contrast, these groups heavily use social media. Twitter, in particular, is widely available and immediate, providing a rich data source that can be used to pilot hypotheses at minimal cost. These hypotheses can then be modified prior to a more in-depth study. Social media data pose challenges for public health officials and researchers who aim to test new hypotheses and policies. These challenges are related to the size of the dataset and the difficulty filtering and validating these data. We will therefore develop and test an innovative computational tool that overcomes these challenges. This tool will supplement traditional survey techniques by facilitating real-time data gathering and rigorous quantitative analysis of social media data related to health narratives, attitudes, and behaviors. We will validate our tool by comparing existing survey data to social media data about influenza vaccination among adults 18-30, adult African Americans, and non-White Hispanics of all ages - three demographic categories with the highest rates of social media use, lower rates of participation in survey research, and lowest rates of seasonal flu vaccination. Thus, our tool will enable theory building. We will test hypotheses derived from the health communication literature, especially regarding how group attitudes form and change, categorize attitudes and collective narratives by existing theories and conceptual models, and build new theory to capture emerging and previously unidentified concepts. Finally, we disseminate our results and novel techniques using a website, vaccinetrends.org, that provides processed social media data to the research community. Our approach offers inexpensive, immediate access to the attitudes of these groups, transcending traditional constraints of time, money, and data access. Our approach is novel because it combines the strengths of social media analysis with those of validated survey techniques. We will draw upon two complementary population samples, representing different timescales and demographics, in order to test hypotheses in a manner that is rapid yet rigorous. In addition, our social media analysis will draw upon novel techniques to infer demographic information and social group membership, enabling the extraction of master narratives - attitudes and content that are associated with rationales for vaccine refusal and, ultimately, behavior. In addition, we will develop tools and techniques that can be adopted by researchers throughout the social, computer, and health sciences. Finally, we draw upon a much more extensive data source than has been found in previous work, including billions of Twitter messages and public forum information that will enable in-depth automated content analysis of vaccine refusal rationales.
描述(由申请人提供):高质量、实时的数据在公共卫生危机中至关重要。然而,依靠随机数字拨号的传统调查方法价格昂贵,难以立即部署,并且无法对没有固定电话的难以接触的人群进行抽样,例如年轻人(18-30岁)和少数民族。相比之下,这些群体大量使用社交媒体。尤其是Twitter,它广泛可用且即时,提供了丰富的数据源,可以以最小的成本用于试验假设。在进行更深入的研究之前,这些假设可以被修改。社交媒体数据给公共卫生官员和旨在测试新假设和政策的研究人员带来了挑战。这些挑战与数据集的大小以及过滤和验证这些数据的难度有关。因此,我们将开发和测试一种创新的计算工具,以克服这些挑战。该工具将通过促进实时数据收集和对与健康叙述、态度和行为有关的社交媒体数据的严格定量分析,补充传统的调查技术。我们将通过比较现有的调查数据与社交媒体数据来验证我们的工具,这些数据涉及18-30岁的成年人、成年非洲裔美国人和所有年龄段的非白人西班牙裔美国人,这三个人口统计类别的社交媒体使用率最高,调查研究参与率较低,季节性流感疫苗接种率最低。因此,我们的工具将使理论构建成为可能。我们将检验来自健康传播文献的假设,特别是关于群体态度如何形成和变化,通过现有理论和概念模型对态度和集体叙事进行分类,并建立新的理论来捕捉新兴的和以前未确定的概念。最后,我们通过一个网站(vaccinetrends.org)传播我们的研究结果和新技术,该网站向研究界提供经过处理的社会媒体数据。我们的方法提供了对这些群体的态度的廉价、即时的访问,超越了时间、金钱和数据访问的传统限制。我们的方法是新颖的,因为它将社会媒体分析的优势与经过验证的调查技术相结合。我们将利用两个互补的人口样本,代表不同的时间尺度和人口结构,以便以一种快速而严格的方式检验假设。此外,我们的社交媒体分析将利用新技术来推断人口统计信息和社会群体成员,从而能够提取主要叙述——与拒绝接种疫苗的理由以及最终的行为相关的态度和内容。此外,我们将开发工具和技术,可以被整个社会,计算机和健康科学的研究人员采用。最后,我们利用了比以前工作中发现的更广泛的数据源,包括数十亿条Twitter消息和公共论坛信息,这些信息将能够对拒绝疫苗的理由进行深入的自动化内容分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Andre Broniatowski其他文献
David Andre Broniatowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Andre Broniatowski', 18)}}的其他基金
Supplementing Survey-Based Analyses of Group Vaccination Narratives and Behaviors Using Social Media
使用社交媒体补充基于调查的群体疫苗接种叙述和行为分析
- 批准号:
9208782 - 财政年份:2015
- 资助金额:
$ 29.59万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 29.59万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 29.59万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 29.59万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 29.59万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 29.59万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 29.59万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 29.59万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 29.59万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 29.59万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 29.59万 - 项目类别:
Research Grant