Heteromultivalent Peptide-Lipid Nanoconstructs as Artificial Platelet Analogs

作为人工血小板类似物的异多价肽-脂质纳米结构

基本信息

  • 批准号:
    8803679
  • 负责人:
  • 金额:
    $ 38.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-02-08 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Allogeneic natural platelet transfusions are clinically routinely required in hemostatic therapy of a variety of bleeding complications. However, natural platelets suffer from (i) limited supply, (ii pathogenic contamination risks resulting in short shelf-life (~3-5 days), and (iii) risks of multipe biological side-effects. Current photochemical pathogen reduction techniques extend the shelf-life of natural platelet products only to ~7 days. Consequently, there is a substantial clinical interest in artificial platelet analogs that can mimic platelet's hemostatic actions, while allowin large-scale production, longer shelf-life and safer in vivo applications. To this end, past approaches in artificial platelets have shown very limited efficacy, possibly because of a major design drawback: platelet's natural hemostatic action requires injury site-specific platelet adhesion and site- selective platelet aggregation to act in tandem, but none of the past approaches have integrated these two capabilities effectively on a single platform. Our research is the first to have successfully integrated these two key hemostatic functions via heteromultivalent vesicular assembly of adhesion-promoting and aggregation- promoting peptide-lipid conjugates. Our artificial platelet construct is simultaneously surface-decorated wit VWF-binding peptides (VBP) for shear-responsive VWF adhesion, collagen-binding peptides (CBP) for shear- independent collagen adhesion and fibrinogen-mimetic peptides (FMP) for enhancing the aggregation of active platelets onto the adhered constructs. This innovative artificial platelet design has exhibited superior hemostatic activity both in vitro and in vivo, an we hypothesize that this superior hemostatic efficacy is due to a combined effect of both primary hemostasis and secondary hemostasis mechanisms induced by our constructs. Our overall goal is to corroborate this hypothesis using three specific aims: In Aim 1 we will establish a mechanistic model of the primary hemostatic action of our nanoconstructs, by first elucidating the domain-specific molecular mechanism of shear-responsive VBP interactions with VWF, and then combining this insight with the already established knowledge of shear-independent helicogenic interaction of CBP with fibrillar collagen and platelet activation-selective interactio of FMP with platelet integrin GPIIb-IIIa. In Aim 2 we will investigate whether the construct-mediated direct enhancement of primary hemostasis, can also in effect enhance secondary hemostasis (coagulation) at the site of construct-induced platelet aggregation, due to pro- coagulant ability of the active platelet membrane. Thus, Aims 1 and 2 will help synergistically corroborate the mechanistic components of our hypothesis. Hence in Aim 3, we will determine whether these construct- induced mechanisms lead to superior hemostatic efficacy in a tail transection bleeding model in thrombocytopenic mice, compared to current clinical hemostat NovoSeven(R). Establishing the construct- induced hemostatic mechanisms in vitro and demonstrating its resultant superior therapeutic efficacy in the thrombocytopenia model in vivo, will lead to detailed evaluation in acute and chronic bleeding models in future.
描述(由申请人提供): 同种异体天然血小板输血在临床上通常需要 各种出血并发症。然而,天然血小板的供应有限(II致病污染风险,导致较短的保质期(〜3-5天)和(iii)多种生物学副作用的风险。当前的光化学病原体还原技术还原技术仅扩大了〜7天的临时临床兴趣。虽然允许大规模生产,但在这一目的中的持续时间和更安全的体内应用,但人造血小板的过去方法表现出非常有限的功效,这可能是由于主要的设计缺陷:血小板的自然止血作用需要损伤现场的损伤位点特定的血小板粘合剂,并且在效果上均无效,但我们的效力是无效的是第一个通过粘附促进和促进肽 - 脂质偶联物的粘附和聚集的囊泡组装成功整合了这两个关键止血功能的人。我们的人造血小板结构是剪切响应性的VWF粘附,胶原结合肽(CBP),用于剪切独立的胶原蛋白粘附和纤维蛋白模拟的肽(FMP),以增强活跃量表的聚集,同时是剪切响应的VWF粘附,胶原结合肽(CBP),同时表面构造了VWF结合肽(VBP),以增强现有层型的剪切胶原蛋白(CBP)。这种创新的人造血小板设计在体外和体内都表现出止血活性上的优质,我们假设这种上止血疗效是由于原发性止血和我们的构造引起的二次止血机制的综合作用。我们的总体目标是使用三个特定目标来证实这一假设:在目标1中,我们将通过首先阐明纳米结构的主要止血作用的机理模型,首先阐明剪切响应性VBP与VWF的剪切响应性VBP相互作用的域特异性分子机制,然后与已建立的洞察力相结合,然后将Shear-Interaction与Shear-Interiationd Interiationd Interactions结合在一起FMP与血小板整合素GPIIB-IIIA的血小板激活选择性相互作用。在AIM 2中,我们将研究构造介导的原发性止血的直接增强是否可以实际上可以增强由于活性血小板膜的凝结剂能力,因此在构建体诱导的血小板聚集位点处的继发性止血(凝结)。因此,目标1和2将有助于协同证实我们假设的机械成分。因此,在AIM 3中,与当前的临床止血Novoseven(R)相比,在AIM 3中,我们将确定这些构造引起的机制是否在血小板减少小鼠的尾巴横向出血模型中导致上止血功效。在体内建立构建体诱导的止血机制,并在体内证明其所得的优质治疗疗效,将来会导致对急性和慢性出血模型的详细评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anirban Sen Gupta其他文献

Anirban Sen Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anirban Sen Gupta', 18)}}的其他基金

Platelet-inspired Delivery System for Targeted Thrombolytic Therapy
用于靶向溶栓治疗的血小板启发输送系统
  • 批准号:
    9127360
  • 财政年份:
    2015
  • 资助金额:
    $ 38.14万
  • 项目类别:
Heteromutivalent Peptide-Lipid Nanoconstructs as Artificial Platelet Analogues
作为人工血小板类似物的异多价肽-脂质纳米结构
  • 批准号:
    10579965
  • 财政年份:
    2014
  • 资助金额:
    $ 38.14万
  • 项目类别:
Heteromutivalent Peptide-Lipid Nanoconstructs as Artificial Platelet Analogues
作为人工血小板类似物的异多价肽-脂质纳米结构
  • 批准号:
    10330577
  • 财政年份:
    2014
  • 资助金额:
    $ 38.14万
  • 项目类别:

相似国自然基金

促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
  • 批准号:
    32301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
  • 批准号:
    82370515
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
  • 批准号:
    82360301
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
  • 批准号:
    82302691
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
  • 批准号:
    82374466
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Designing non-toxic hydrogels for trans-tympanic drug delivery and treatment of otitis media
设计用于经鼓室药物输送和治疗中耳炎的无毒水凝胶
  • 批准号:
    10471382
  • 财政年份:
    2021
  • 资助金额:
    $ 38.14万
  • 项目类别:
Designing non-toxic hydrogels for trans-tympanic drug delivery and treatment of otitis media
设计用于经鼓室药物输送和治疗中耳炎的无毒水凝胶
  • 批准号:
    10684705
  • 财政年份:
    2021
  • 资助金额:
    $ 38.14万
  • 项目类别:
Designing non-toxic hydrogels for trans-tympanic drug delivery and treatment of otitis media
设计用于经鼓室药物输送和治疗中耳炎的无毒水凝胶
  • 批准号:
    10292765
  • 财政年份:
    2021
  • 资助金额:
    $ 38.14万
  • 项目类别:
Mechanisms of integrin signaling and a new anti-platelet/anti-inflammatory approach
整合素信号传导机制和新的抗血小板/抗炎方法
  • 批准号:
    9894367
  • 财政年份:
    2020
  • 资助金额:
    $ 38.14万
  • 项目类别:
Mechanisms of integrin signaling and a new anti-platelet/anti-inflammatory approach
整合素信号传导机制和新的抗血小板/抗炎方法
  • 批准号:
    10434683
  • 财政年份:
    2020
  • 资助金额:
    $ 38.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了