Heteromultivalent Peptide-Lipid Nanoconstructs as Artificial Platelet Analogs
作为人工血小板类似物的异多价肽-脂质纳米结构
基本信息
- 批准号:8803679
- 负责人:
- 金额:$ 38.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-08 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdhesionsAdverse effectsAllogenicAnimal ModelBindingBiologicalBiological AssayBleeding time procedureBlood Coagulation FactorBlood Platelet DisordersBlood PlateletsChronicClinicClinicalCoagulantsCoagulation ProcessCollagenComplicationEnsureEvaluationExhibitsFDA approvedFamilial diseaseFibrillar CollagenFibrinFibrinogenFluorescence MicroscopyFutureGenerationsGoalsHealthHemorrhageHemostatic AgentsHemostatic functionIn VitroInjection of therapeutic agentInjuryIntegrinsIntravenousKnowledgeLeadLifeLipidsMeasuresMediatingMembraneModalityModelingMolecularMonitorMusOperative Surgical ProceduresPathologicPatientsPeptidesPlasmaPlatelet ActivationPlatelet Count measurementPlatelet TransfusionPlatelet aggregationProcessRadiation therapyResearchRiskSalineSiteSurfaceTailTechniquesTechnologyTestingTherapeuticThrombinThrombocytopeniaTransfusionTraumaTreatment EfficacyVisionWitanalogbaseclinically relevantclinically significantcostdesigndesign and constructionglycocalicinhigh riskin vivoin vivo Modelinnovationinsightinterestlarge scale productionmimeticspathogensurface coatingvon Willebrand Factor
项目摘要
DESCRIPTION (provided by applicant):
Allogeneic natural platelet transfusions are clinically routinely required in hemostatic therapy of
a variety of bleeding complications. However, natural platelets suffer from (i) limited supply, (ii pathogenic contamination risks resulting in short shelf-life (~3-5 days), and (iii) risks of multipe biological side-effects. Current photochemical pathogen reduction techniques extend the shelf-life of natural platelet products only to ~7 days. Consequently, there is a substantial clinical interest in artificial platelet analogs that can mimic platelet's hemostatic actions, while allowin large-scale production, longer shelf-life and safer in vivo applications. To this end, past approaches in artificial platelets have shown very limited efficacy, possibly because of a major design drawback: platelet's natural hemostatic action requires injury site-specific platelet adhesion and site- selective platelet aggregation to act in tandem, but none of the past approaches have integrated these two capabilities effectively on a single platform. Our research is the first to have successfully integrated these two key hemostatic functions via heteromultivalent vesicular assembly of adhesion-promoting and aggregation- promoting peptide-lipid conjugates. Our artificial platelet construct is simultaneously surface-decorated wit VWF-binding peptides (VBP) for shear-responsive VWF adhesion, collagen-binding peptides (CBP) for shear- independent collagen adhesion and fibrinogen-mimetic peptides (FMP) for enhancing the aggregation of active platelets onto the adhered constructs. This innovative artificial platelet design has exhibited superior hemostatic activity both in vitro and in vivo, an we hypothesize that this superior hemostatic efficacy is due to a combined effect of both primary hemostasis and secondary hemostasis mechanisms induced by our constructs. Our overall goal is to corroborate this hypothesis using three specific aims: In Aim 1 we will establish a mechanistic model of the primary hemostatic action of our nanoconstructs, by first elucidating the domain-specific molecular mechanism of shear-responsive VBP interactions with VWF, and then combining this insight with the already established knowledge of shear-independent helicogenic interaction of CBP with fibrillar collagen and platelet activation-selective interactio of FMP with platelet integrin GPIIb-IIIa. In Aim 2 we will investigate whether the construct-mediated direct enhancement of primary hemostasis, can also in effect enhance secondary hemostasis (coagulation) at the site of construct-induced platelet aggregation, due to pro- coagulant ability of the active platelet membrane. Thus, Aims 1 and 2 will help synergistically corroborate the mechanistic components of our hypothesis. Hence in Aim 3, we will determine whether these construct- induced mechanisms lead to superior hemostatic efficacy in a tail transection bleeding model in thrombocytopenic mice, compared to current clinical hemostat NovoSeven(R). Establishing the construct- induced hemostatic mechanisms in vitro and demonstrating its resultant superior therapeutic efficacy in the thrombocytopenia model in vivo, will lead to detailed evaluation in acute and chronic bleeding models in future.
描述(由申请人提供):
同种异体天然血小板输注是临床上常规需要的止血治疗,
各种出血并发症然而,天然血小板遭受(i)有限的供应,(ii)导致短保质期(约3-5天)的病原体污染风险,和(iii)多重生物副作用的风险。目前的光化学病原体减少技术仅将天然血小板产品的保质期延长至约7天。因此,人工血小板类似物的研究具有重要的临床意义,它可以模拟血小板的止血作用,同时允许大规模生产,更长的保质期和更安全的体内应用。为此,人工血小板中的过去方法已经显示出非常有限的功效,这可能是由于主要的设计缺陷:血小板的天然止血作用需要损伤位点特异性血小板粘附和位点选择性血小板聚集以串联起作用,但是过去的方法都没有在单个平台上有效地整合这两种能力。我们的研究是第一个通过促进粘附和促进聚集的肽-脂质缀合物的异多价囊泡组装成功整合这两种关键止血功能的研究。我们的人工血小板构建体同时表面修饰有用于剪切响应性VWF粘附的VWF结合肽(VBP)、用于剪切非依赖性胶原粘附的胶原结合肽(CBP)和用于增强活性血小板在粘附的构建体上的聚集的纤维蛋白原模拟肽(FMP)。这种创新的人工血小板设计在体外和体内均表现出上级止血活性,我们假设这种上级止血功效是由于我们的构建物诱导的初级止血和次级止血机制的组合效应。我们的总体目标是用三个具体目标来证实这一假设:在目的1中,我们将建立我们的纳米构建物的主要止血作用的机制模型,首先阐明剪切响应性VBP与VWF相互作用的结构域特异性分子机制,然后将这一见解与CBP与纤维胶原和血小板活化的剪切非依赖性螺旋相互作用的已有知识相结合-FMP与血小板整合素GPIIb-IIIa的选择性相互作用。在目的2中,我们将研究由于活性血小板膜的促凝血能力,构建体介导的初级止血的直接增强是否也可以有效地增强在构建体诱导的血小板聚集部位的次级止血(凝血)。因此,目标1和2将有助于协同证实我们假设的机制组成部分。因此,在目的3中,我们将确定与目前的临床止血剂NovoSeven相比,这些构建体诱导的机制是否在血小板减少小鼠的尾部横切出血模型中导致上级止血功效.在体外建立构建体诱导的止血机制并证明其在体内血小板减少模型中的上级治疗功效,将导致未来在急性和慢性出血模型中的详细评价。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anirban Sen Gupta其他文献
Anirban Sen Gupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anirban Sen Gupta', 18)}}的其他基金
Platelet-inspired Delivery System for Targeted Thrombolytic Therapy
用于靶向溶栓治疗的血小板启发输送系统
- 批准号:
9127360 - 财政年份:2015
- 资助金额:
$ 38.14万 - 项目类别:
Heteromutivalent Peptide-Lipid Nanoconstructs as Artificial Platelet Analogues
作为人工血小板类似物的异多价肽-脂质纳米结构
- 批准号:
10579965 - 财政年份:2014
- 资助金额:
$ 38.14万 - 项目类别:
Heteromutivalent Peptide-Lipid Nanoconstructs as Artificial Platelet Analogues
作为人工血小板类似物的异多价肽-脂质纳米结构
- 批准号:
10330577 - 财政年份:2014
- 资助金额:
$ 38.14万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 38.14万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 38.14万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 38.14万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 38.14万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 38.14万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 38.14万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 38.14万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 38.14万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 38.14万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 38.14万 - 项目类别: