Connecting drugs to pathways using malaria parasite transcript profiles
使用疟疾寄生虫转录谱将药物与途径连接起来
基本信息
- 批准号:8638701
- 负责人:
- 金额:$ 22.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-06 至 2015-11-30
- 项目状态:已结题
- 来源:
- 关键词:AntimalarialsBiologicalBiologyBloodCancer cell lineCellsChemicalsCollectionCommunitiesCommunity ParticipationComplexComputing MethodologiesCustomDataData AnalysesDatabasesDiseaseDrug CompoundingDrug TargetingDrug effect disorderDrug resistanceErythrocytesFingerprintFoundationsGene ExpressionGene Expression ProfileGene TargetingGenesGenetic TranscriptionGoalsHumanHuman Cell LineKnowledgeLeadLibrariesLinkMalariaMethodsMiningMolecular ProfilingMutationNetwork-basedParasitesPathway interactionsPharmaceutical PreparationsPhenotypePhysiologicalPlasmodium falciparumPopulationPreclinical Drug EvaluationProcessResourcesSeriesStagingSystemTestingTranscriptValidationWorkasexualbasecellular targetingcomputer frameworkcost effectivedensitydrug discoverydrug mechanismexpectationhigh throughput technologyimprovedinhibitor/antagonistknockout genemutantnovelopen sourcepublic health relevanceresponsescaffoldscreeningsmall molecule
项目摘要
High-throughput whole-cell screens of millions of proprietary and publicly available compounds have led to the
discovery of thousands of hits with confirmed anti-malarial activity. These compounds represent a rich starting
point for drug discovery. Drug discovery efforts increasingly rely on whole-cell screening, mostly conducted
against the asexual blood-stages of malaria parasites. The advantage of whole-cell screens is that compounds
gain access to the parasite where they can hit simple or multifactorial targets. A routine and cost-effective
method to elucidating mechanisms of action (MoA) of these hits would greatly enhance the drug discovery
process. Consequently, there is an urgent need for robust, high-throughput technologies with the sensitivity to
identify, validate and prioritize drug effects on targets and pathways in the parasite, with no a priori expectation
of how the drug works. Here we present a systematic approach to uncover the functional connections among
drug actions by generating a reference collection of gene expression profiles from two different parasite lines
treated with an array of drugs/small molecules with known or suspected targets and chosen to span a wide
range of biological space (Aim 1). We will then capture these induced transcriptional states as response
signatures that do not depend on large effects by any one or few genes, but rather can discern subtle
relationships among drug effects based on the pathway fingerprints derived from these drug-specific
transcriptional responses (Aim 2). This collection can be easily probed with new drugs to be placed in this
drug-drug network as a framework for validation and hypothesis testing (Aim 3).
高通量全细胞筛选数百万种专有和公开可用的化合物,
发现了数千个经证实具有抗疟疾活性的命中物。这些化合物代表了一个丰富的开始
药物发现的关键药物发现工作越来越依赖于全细胞筛选,
对抗血液中无性繁殖的疟原虫全细胞筛选的优势在于,
获得接触寄生虫的机会,在那里它们可以攻击简单或多因素的目标。一个常规和成本效益
阐明这些命中的作用机制(MoA)的方法将极大地促进药物发现
过程因此,迫切需要强大的、高通量的技术,并且对以下方面敏感
确定、验证和优先考虑药物对寄生虫中靶点和途径的影响,而没有先验期望
药物的作用原理在这里,我们提出了一个系统的方法来揭示功能之间的联系,
通过从两种不同的寄生虫系中产生参考基因表达谱来产生药物作用
用一系列具有已知或疑似靶点的药物/小分子治疗,并选择广泛的
生物空间范围(目标1)。然后,我们将捕获这些诱导的转录状态作为响应
这些特征不依赖于任何一个或几个基因的大效应,而是可以识别微妙的
基于来自这些药物特异性的途径指纹,
转录反应(Aim 2)。这个集合可以很容易地探测与新的药物被放置在这个
药物-药物网络作为验证和假设检验的框架(目标3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael T Ferdig其他文献
Michael T Ferdig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael T Ferdig', 18)}}的其他基金
Harnessing the power of experimental genetic crosses and systems genetics to probe drug resistance in malaria
利用实验遗传杂交和系统遗传学的力量来探测疟疾的耐药性
- 批准号:
9751186 - 财政年份:2017
- 资助金额:
$ 22.8万 - 项目类别:
Dissecting the genetic complexity of artemisinin resistance
剖析青蒿素耐药性的遗传复杂性
- 批准号:
10216648 - 财政年份:2017
- 资助金额:
$ 22.8万 - 项目类别:
Harnessing the power of experimental genetic crosses and systems genetics to probe drug resistance in malaria
利用实验遗传杂交和系统遗传学的力量来探测疟疾的耐药性
- 批准号:
10216642 - 财政年份:2017
- 资助金额:
$ 22.8万 - 项目类别:
Harnessing the power of experimental genetic crosses and systems genetics to probe drug resistance in malaria
利用实验遗传杂交和系统遗传学的力量来探测疟疾的耐药性
- 批准号:
10216641 - 财政年份:2017
- 资助金额:
$ 22.8万 - 项目类别:
Transcript networks and crowdsourcing to predict drug combinations in malaria par
转录网络和众包预测疟疾药物组合
- 批准号:
8911768 - 财政年份:2014
- 资助金额:
$ 22.8万 - 项目类别:
A network-based method for predicting gene interactions in artemisinin resistance
基于网络的青蒿素抗性基因相互作用预测方法
- 批准号:
8963428 - 财政年份:2014
- 资助金额:
$ 22.8万 - 项目类别:
Determinants of growth and fitness in drug resistant malaria parasites
耐药疟疾寄生虫生长和健康的决定因素
- 批准号:
7546963 - 财政年份:2008
- 资助金额:
$ 22.8万 - 项目类别:
Determinants of growth and fitness in drug resistant malaria parasites
耐药疟疾寄生虫生长和健康的决定因素
- 批准号:
8005522 - 财政年份:2008
- 资助金额:
$ 22.8万 - 项目类别:
Determinants of growth and fitness in drug resistant malaria parasites
耐药疟疾寄生虫生长和健康的决定因素
- 批准号:
8206639 - 财政年份:2008
- 资助金额:
$ 22.8万 - 项目类别:
Determinants of growth and fitness in drug resistant malaria parasites
耐药疟疾寄生虫生长和健康的决定因素
- 批准号:
7752526 - 财政年份:2008
- 资助金额:
$ 22.8万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 22.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
- 批准号:
571519-2021 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Alliance Grants
The biology of Ciceribacter spp. and their adaptations as biological chassis for engineered nitrogen fixation
西塞里杆菌属的生物学。
- 批准号:
2735213 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Studentship
NSF Postdoctoral Fellowship in Biology: Symbiosis as a Means of Survival for Biological Soil Crust Microbes
NSF 生物学博士后奖学金:共生作为生物土壤结皮微生物的生存手段
- 批准号:
2209217 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Fellowship Award
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
- 批准号:
2242530 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Standard Grant
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
- 批准号:
RGPIN-2021-03987 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Discovery Grants Program - Individual
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Discovery Grants Program - Individual
BEORHN: Biological Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟对硝化反应中的活性羟胺进行生物酶氧化
- 批准号:
BB/V01577X/1 - 财政年份:2022
- 资助金额:
$ 22.8万 - 项目类别:
Research Grant
NSF Postdoctoral Fellowship in Biology FY 2020: Integrating biological collections and observational data sources to estimate long-term butterfly population trends
2020 财年 NSF 生物学博士后奖学金:整合生物收藏和观测数据源来估计蝴蝶种群的长期趋势
- 批准号:
2010698 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
Fellowship Award
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2021
- 资助金额:
$ 22.8万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




