Transcript networks and crowdsourcing to predict drug combinations in malaria par
转录网络和众包预测疟疾药物组合
基本信息
- 批准号:8911768
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:ArtemisininsBioinformaticsBiologicalBiological AssayCell physiologyCellsCollaborationsCombined Modality TherapyCommunitiesComplexComputing MethodologiesCrowdingDataData AnalysesData SetDefectDevelopmentDrug CombinationsDrug TargetingDrug resistanceEffectivenessEngineeringEquilibriumFailureGenesGenetic CrossesGenetic TranscriptionGenomeGenomicsGenotypeGrowthHealthHumanIn VitroIndividualInternationalKnock-outKnowledgeLaboratoriesLinkLongevityMalariaMethodsMiningMolecularMulti-Drug ResistanceNormal CellOrganismPaperParasitesPathway AnalysisPathway interactionsPersonal SatisfactionPharmaceutical PreparationsPhenotypePlasmodium falciparumPredispositionProcessPublishingReportingResearchResistanceResourcesScienceSecondary toSolutionsSourceSoutheastern AsiaSystemSystems BiologyTestingTicksTimeTranscriptWorld Health Organizationanalytical toolartemisininebasebiological systemsburden of illnesscellular targetingclinically relevantcombinatorialcomputerized toolsdata miningdrug developmentdrug discoverygene interactiongenetic approachimprovedinnovationmutantnovelpathogenresistant strainresponsetreatment strategy
项目摘要
DESCRIPTION (provided by applicant): The global implementation of Artemisinin (ART)-based combination therapies (ACTs) has significantly reduced disease burden and is recognized by the World Health Organization as the first line treatment against the malaria parasite, Plasmodium falciparum, in all endemic regions. However, recent reports of ART resistance raise extreme alarms for the well-being of this last line of defense. With the looming prospect of the failure of traditional ACTs, the urgent challenge is to expand concepts and strategies to bolster the effectiveness and longevity of ART against multi-drug resistant malaria strains. Historically, this process of finding partners has been ad hoc, relying on a narrow existing array of compounds known to be individually effective against parasites. Rational and precise drug combinations are extraordinarily valuable for improving efficacy, minimizing off-target effects, decreasing the rate of resistance emergence in human pathogens. Traditional empirical approaches encounter significant challenges and new genomic/systems biology offers predictive power to optimally identify targets and focused empirical testing. We propose to formalize a conceptual framework that utilizes ART transcriptional responses of 30 genotypically diverse global isolates and integrates the resulting ART response networks with transcriptional responses to 30 diverse drugs across 3 isolates to predict optimal drug synergies for ART. i) The approach integrates genomic datasets with growth phenotypes from knockout lines and flux-balance analysis (FBA) to predict ART compromised gene interactions that potentially enhance susceptibility to secondary drugs. ii) The approach extends datasets generated in this proposal to the Dialogue for Reverse Engineering Assessments and Methods (DREAM), an established open innovation platform for systems biology, to engage an international community of data analysts in developing novel methods for predicting drug synergy at scale that is not attainable by conventional methods. The proposed project has the potential to advance the search for ART partner drugs while at the same time contributing to novel methods for linking genomic datasets to clinically relevant phenotypes.
描述(由申请人提供):全球实施基于青蒿素(ART)的联合疗法(ACT)显著降低了疾病负担,并被世界卫生组织认定为所有流行地区抗疟疾寄生虫恶性疟原虫的一线治疗药物。然而,最近关于抗逆转录病毒疗法耐药性的报告为这最后一道防线的健康状况敲响了警钟。随着传统青蒿素综合疗法失败的前景日益迫近,迫切的挑战是扩大概念和战略,以加强抗逆转录病毒疗法对耐多药疟疾菌株的有效性和持久性。从历史上看,这种寻找伴侣的过程是临时性的,依赖于已知对寄生虫有效的一系列狭窄的现有化合物。合理、精确的药物组合对于提高疗效、减少脱靶效应、降低人类病原体的耐药率具有非常重要的价值。传统的经验方法遇到了重大挑战,新的基因组/系统生物学提供了预测能力,以最佳地识别目标和集中的经验测试。我们建议正式化一个概念框架,该框架利用30种基因型多样的全球分离株的ART转录应答,并将所得ART应答网络与3种分离株对30种不同药物的转录应答整合,以预测ART的最佳药物协同作用。i)该方法将基因组数据集与来自敲除株和通量平衡分析(FBA)的生长表型整合。预测ART损害的基因相互作用,可能会增加对二级药物的敏感性。该方法将本提案中生成的数据集扩展到逆向工程评估和方法对话(DREAM),这是一个已建立的系统生物学开放式创新平台,旨在吸引国际数据分析师社区开发新方法,用于预测传统方法无法实现的大规模药物协同作用。拟议的项目有可能推进ART合作药物的搜索,同时有助于将基因组数据集与临床相关表型联系起来的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael T Ferdig其他文献
Michael T Ferdig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael T Ferdig', 18)}}的其他基金
Harnessing the power of experimental genetic crosses and systems genetics to probe drug resistance in malaria
利用实验遗传杂交和系统遗传学的力量来探测疟疾的耐药性
- 批准号:
9751186 - 财政年份:2017
- 资助金额:
$ 19万 - 项目类别:
Dissecting the genetic complexity of artemisinin resistance
剖析青蒿素耐药性的遗传复杂性
- 批准号:
10216648 - 财政年份:2017
- 资助金额:
$ 19万 - 项目类别:
Harnessing the power of experimental genetic crosses and systems genetics to probe drug resistance in malaria
利用实验遗传杂交和系统遗传学的力量来探测疟疾的耐药性
- 批准号:
10216642 - 财政年份:2017
- 资助金额:
$ 19万 - 项目类别:
Harnessing the power of experimental genetic crosses and systems genetics to probe drug resistance in malaria
利用实验遗传杂交和系统遗传学的力量来探测疟疾的耐药性
- 批准号:
10216641 - 财政年份:2017
- 资助金额:
$ 19万 - 项目类别:
A network-based method for predicting gene interactions in artemisinin resistance
基于网络的青蒿素抗性基因相互作用预测方法
- 批准号:
8963428 - 财政年份:2014
- 资助金额:
$ 19万 - 项目类别:
Connecting drugs to pathways using malaria parasite transcript profiles
使用疟疾寄生虫转录谱将药物与途径连接起来
- 批准号:
8638701 - 财政年份:2013
- 资助金额:
$ 19万 - 项目类别:
Determinants of growth and fitness in drug resistant malaria parasites
耐药疟疾寄生虫生长和健康的决定因素
- 批准号:
7546963 - 财政年份:2008
- 资助金额:
$ 19万 - 项目类别:
Determinants of growth and fitness in drug resistant malaria parasites
耐药疟疾寄生虫生长和健康的决定因素
- 批准号:
8005522 - 财政年份:2008
- 资助金额:
$ 19万 - 项目类别:
Determinants of growth and fitness in drug resistant malaria parasites
耐药疟疾寄生虫生长和健康的决定因素
- 批准号:
8206639 - 财政年份:2008
- 资助金额:
$ 19万 - 项目类别:
Determinants of growth and fitness in drug resistant malaria parasites
耐药疟疾寄生虫生长和健康的决定因素
- 批准号:
7752526 - 财政年份:2008
- 资助金额:
$ 19万 - 项目类别:
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
- 批准号:
BB/X019802/1 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
- 批准号:
484699 - 财政年份:2022
- 资助金额:
$ 19万 - 项目类别:
Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
- 批准号:
416848-2011 - 财政年份:2011
- 资助金额:
$ 19万 - 项目类别:
University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
- 批准号:
261818-2006 - 财政年份:2010
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




