Statistical methods for clinical trials with multivariate longitudinal outcomes
具有多变量纵向结果的临床试验的统计方法
基本信息
- 批准号:9030015
- 负责人:
- 金额:$ 31.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlzheimer&aposs DiseaseBayesian MethodBehavioralClinicalClinical TrialsCognitiveComputer softwareDataData CorrelationsData SetDiseaseDisease ProgressionDouble-Blind MethodEvaluationEventFutureHealthHeterogeneityHuntington DiseaseImpairmentIndividualInternetLeadMeasuresMedicalMethodologyMethodsModelingMotorMultivariate AnalysisNatureNeurodegenerative DisordersOnline SystemsOutcomeOutcome MeasureParkinson DiseasePatientsPerformancePhase III Clinical TrialsPlacebo ControlPlacebosRandomizedReportingRiskSelection for TreatmentsSeverity of illnessSiteStatistical MethodsTestingTimeTranslational ResearchVisitbasedata structuredesignhazardinsightinterestopen sourceprimary outcomeprognostic toolpublic health relevancesoftware developmenttime intervaltooltraittreatment effectuser-friendly
项目摘要
DESCRIPTION (provided by applicant): Defining the treatment effects in clinical trials that collect multivariate outcome data longitudinally is a difficult and open problem. The problem is further complicated by the heterogeneity of data, outcome scales, missing data, and correlation within and between outcomes of the same subject. To address this problem, this project proposes to develop the multidimensional latent trait linear mixed model (MLTLMM), define the treatment effect, and build the necessary complexity of the model to incorporate the major components of the data that could lead to strong biases in treatment effect estimation. The overall objectives of this proposal are to: 1) develop a modeling framework for analyzing multivariate longitudinal data and build an increasingly more sophisticated class of models that account for known, and currently ignored, problems in the data; 2) provide fast inferential and statistically principled approaches to inference; 3) develop a class of sensitivity analysis approaches to modeling choices; 4) develop tools for personalized dynamic predictions to facilitate targeted treatments; 5) apply these methods to data from current clinical trials; and 6)
develop and standardize the newly proposed approaches via professional software development and web deployment. Our methods of defining and estimating the overall treatment effects in multivariate longitudinal data address the critical need across trials of many
medical conditions (e.g., Alzheimer's disease, Huntington's disease) with a similar data structure.
描述(由申请人提供):在纵向收集多变量结局数据的临床试验中定义治疗效果是一个困难和开放的问题。数据的异质性、结果量表、缺失数据以及同一受试者结果之间的相关性使问题进一步复杂化。为了解决这个问题,本项目提出开发多维潜在性状线性混合模型(MLTLMM),定义治疗效果,并建立必要的模型复杂性,以纳入可能导致治疗效果估计强烈偏倚的数据的主要成分。该提案的总体目标是:1)开发用于分析多变量纵向数据的建模框架,并建立越来越复杂的一类模型,以解释数据中已知的、目前被忽视的问题; 2)提供快速推理和统计原则的推理方法; 3)开发一类敏感性分析方法以进行建模选择; 4)开发个性化动态预测工具,以促进靶向治疗; 5)将这些方法应用于当前临床试验的数据;以及6)
通过专业软件开发和网络部署,开发和标准化新提出的方法。我们在多变量纵向数据中定义和估计总体治疗效果的方法解决了许多临床试验的关键需求。
医疗状况(例如,阿尔茨海默氏病、亨廷顿氏病)具有类似的数据结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng Luo其他文献
Energy consumption forecasting for laser manufacturing of large artifacts based on fusionable transfer learning
- DOI:
10.1186/s42492-024-00178-3 - 发表时间:
2024-12-02 - 期刊:
- 影响因子:6.000
- 作者:
Linxuan Wang;Jinghua Xu;Shuyou Zhang;Jianrong Tan;Shaomei Fei;Xuezhi Shi;Jihong Pang;Sheng Luo - 通讯作者:
Sheng Luo
Sheng Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng Luo', 18)}}的其他基金
Integrative modeling and dynamic prediction of Alzheimer's disease
阿尔茨海默病的综合建模与动态预测
- 批准号:
10255992 - 财政年份:2020
- 资助金额:
$ 31.22万 - 项目类别:
Integrative modeling and dynamic prediction of Alzheimer's disease
阿尔茨海默病的综合建模与动态预测
- 批准号:
10414094 - 财政年份:2020
- 资助金额:
$ 31.22万 - 项目类别:
Integrative modeling and dynamic prediction of Alzheimer's disease
阿尔茨海默病的综合建模与动态预测
- 批准号:
10618887 - 财政年份:2020
- 资助金额:
$ 31.22万 - 项目类别:
Statistical Methods for Clinical Trials with Multivariate Longitudinal Outcomes
多变量纵向结果临床试验的统计方法
- 批准号:
9605403 - 财政年份:2017
- 资助金额:
$ 31.22万 - 项目类别:
Statistical methods for clinical trials with multivariate longitudinal outcomes
具有多变量纵向结果的临床试验的统计方法
- 批准号:
9146437 - 财政年份:2015
- 资助金额:
$ 31.22万 - 项目类别:
Parkinson's Disease Clinical Trial: Statistical Center
帕金森病临床试验:统计中心
- 批准号:
8782643 - 财政年份:2001
- 资助金额:
$ 31.22万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 31.22万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 31.22万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 31.22万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 31.22万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 31.22万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 31.22万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 31.22万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 31.22万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 31.22万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 31.22万 - 项目类别:
Research Grant














{{item.name}}会员




