Structural basis of motility by dimeric kinesin motor proteins
二聚体驱动蛋白运动的结构基础
基本信息
- 批准号:8839801
- 负责人:
- 金额:$ 31.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAffinityAlgorithmsArchitectureBindingBinding ProteinsBiological AssayBiological ModelsBiological ProcessCatalytic DomainCell divisionCell physiologyCellsCommunicationComplexCryoelectron MicroscopyCytokinesisDataDefectDevelopmentDimerizationDrug DesignDynein ATPaseEnzymesEukaryotic CellFailureFamilyFilamentFutureGenerationsHeadHealthHeterogeneityHydrolysisImageIndividualKinesinKineticsLeadLeftMalignant NeoplasmsMapsMethodsMicrotubulesMitosisMolecularMolecular MotorsMotorMotor ActivityMovementMutationMyosin ATPaseNatureNeuronsNucleotidesPathway interactionsPharmacologic SubstancePlayPower strokePropertyProteinsResearchResolutionRoentgen RaysRoleSamplingSeriesSiteSite-Directed MutagenesisStructureTechniquesTestingTherapeuticVesicle Transport PathwayWorkX-Ray Crystallographyalpha helixbasecancer therapycell motilitycofactordensitydimerempoweredimage processingimprovedin vivoinhibitor/antagonistinnovationinsightinstrumentationinterestkataninmutantnanometernovelreconstructionsingle moleculetrait
项目摘要
DESCRIPTION (provided by applicant): Kinesin molecular motors move along microtubules by taking alternating steps with a pair of catalytic head domains, where each step is powered by hydrolysis of a single molecule of ATP. This activity plays a key role in numerous cellular functions such as mitosis and neuronal vesicle transport. It is therefore of considerable interest to dissect the molecular details that underlie kinesin's motility functions, not only as a basis fo understanding how this motor's activity may be modulated in vivo by a large variety of regulating factors, but also to aid the development of pharmaceuticals that target these motors for cancer therapy and other therapeutic purposes. Despite intensive study, however, the conformational changes that underlie kinesin's motility cycle remain strongly debated. A particularly elusive question is how dimeric kinesin sustains continuous stepwise movement, because existing methods have not captured the structure of actively stepping kinesin dimers . We have recently made two breakthroughs in our studies of the kinesin motor. First, by using a combination of state of the art cryo-electron microscopy instrumentation together with our own novel image-processing methods, we have solved a new 3D reconstruction of the kinesin-microtubule complex at ~5-6¿ resolution, substantially improving on previous efforts. This map reveals an unanticipated rearrangement of kinesin's active site following microtubule-stimulated ADP release, suggesting a novel mechanism for this key step in the kinesin cycle and also informing the motor's power stroke. Second, we have devised a novel algorithm for producing high-resolution 3D reconstructions from cryo-EM images of imperfectly decorated, heterogeneous assemblies of kinesin with microtubules. This method has allowed us to solve the first 3D reconstruction of a kinesin dimer as it steps along a microtubule. We will combine our new cryo-EM methods with a host of other state of the art structural and functional techniques, including AFM and saturation-transfer EPR, to establish the detailed basis of kinesin motor function. By comparing structure and functional properties of dimeric kinesin in the presence or absence of mutations that cause loss of motor coordination, we will define the structural basis of inter-molecular tension control and other critical properties of kinesin that are enabled by dimerization. We will also apply cryo-EM to structure/function studies of site-directed mutants in the kinesin catalytic domain in order to test hypotheses for how kinesin's activity is regulated by
microtubule binding, and how the motor regulates its affinity for the microtubule during its cycle.
The methods developed during the course of this research will transform our ability to study many other large and previously intractable filament-binding proteins, including other molecular motor families as well as microtubule severing enzymes.
描述(由申请人提供):驱动蛋白分子马达通过与一对催化头部结构域采取交替步骤沿着沿着微管移动,其中每个步骤由单个ATP分子的水解提供动力。这种活性在许多细胞功能中起关键作用,如有丝分裂和神经元囊泡运输。因此,解剖驱动蛋白运动功能的分子细节是相当有意义的,不仅作为理解这种马达的活性如何在体内被各种调节因子调节的基础,而且还有助于开发针对这些马达用于癌症治疗和其他治疗目的的药物。尽管深入的研究,然而,驱动蛋白的运动周期的基础构象变化仍然存在很大的争议。一个特别难以捉摸的问题是二聚体驱动蛋白如何维持连续的步进运动,因为现有方法尚未捕获主动步进驱动蛋白二聚体的结构。最近,我们在驱动蛋白马达的研究中取得了两项突破。首先,通过使用最先进的冷冻电子显微镜仪器与我们自己的新的图像处理方法相结合,我们已经解决了驱动蛋白微管复合物的新的3D重建,分辨率约为5-6?,大大提高了以前的努力。这张图揭示了微管刺激ADP释放后驱动蛋白活性位点的意外重排,这表明驱动蛋白循环中这一关键步骤的新机制,也为电机的动力冲程提供了信息。第二,我们已经设计了一种新的算法,用于产生高分辨率的三维重建从冷冻EM图像的不完美的装饰,异质组件的驱动蛋白与微管。这种方法使我们能够解决第一个三维重建的驱动蛋白二聚体,因为它的步骤沿着微管。我们将联合收割机结合我们的新的冷冻电镜方法与其他国家的最先进的结构和功能技术,包括原子力显微镜和饱和转移EPR主机,建立驱动蛋白运动功能的详细基础。通过比较结构和功能特性的二聚体驱动蛋白的存在或不存在的突变,导致运动协调的损失,我们将定义的结构基础的分子间的张力控制和其他关键特性的驱动蛋白,使二聚化。我们还将应用cryo-EM对驱动蛋白催化结构域中的定点突变体进行结构/功能研究,以检验驱动蛋白活性如何受以下因素调节的假设:
微管结合,以及马达如何在其周期中调节其对微管的亲和力。
本研究过程中开发的方法将改变我们研究许多其他大型且以前难以处理的细丝结合蛋白的能力,包括其他分子马达家族以及微管切割酶。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHARLES VAUGHN SINDELAR其他文献
CHARLES VAUGHN SINDELAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHARLES VAUGHN SINDELAR', 18)}}的其他基金
Structural basis of motility by dimeric kinesin and myosin motor proteins
二聚驱动蛋白和肌球蛋白运动蛋白运动的结构基础
- 批准号:
10533263 - 财政年份:2014
- 资助金额:
$ 31.64万 - 项目类别:
Structural basis of motility by dimeric kinesin and myosin motor proteins
二聚驱动蛋白和肌球蛋白运动蛋白运动的结构基础
- 批准号:
10063940 - 财政年份:2014
- 资助金额:
$ 31.64万 - 项目类别:
Structural basis of motility by dimeric kinesin and myosin motor proteins
二聚驱动蛋白和肌球蛋白运动蛋白运动的结构基础
- 批准号:
10296683 - 财政年份:2014
- 资助金额:
$ 31.64万 - 项目类别:
Structural basis of motility by dimeric kinesin motor proteins
二聚体驱动蛋白运动的结构基础
- 批准号:
8674409 - 财政年份:2014
- 资助金额:
$ 31.64万 - 项目类别:
Structural basis of motility by dimeric kinesin motor proteins
二聚体驱动蛋白运动的结构基础
- 批准号:
9060347 - 财政年份:2014
- 资助金额:
$ 31.64万 - 项目类别:
Structural basis of motility by dimeric kinesin and myosin motor proteins
二聚驱动蛋白和肌球蛋白运动蛋白运动的结构基础
- 批准号:
9887049 - 财政年份:2014
- 资助金额:
$ 31.64万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 31.64万 - 项目类别:
Research Grant