Efficient electronic phenotyping using APHRODITE in the Million Veteran Program
在百万退伍军人计划中使用 APHRODITE 进行高效电子表型分析
基本信息
- 批准号:9955052
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:Acute myocardial infarctionAffectAlgorithmsCardiovascular systemCatalogsChronicClassificationClinical ResearchCodeCommunitiesComplexComputational algorithmComputer softwareDNADataData SetDevelopmentDiseaseElectronic Health RecordEndocrineEvaluationGenerationsGeneticGenetic DeterminismGenotypeGoalsGoldHealthHumanIndividualInheritedKnowledgeLabelLearningLifeLinkLungManualsMapsMedicalMedical GeneticsMethodologyMethodsModelingMusculoskeletalNamesNeurologicNon-Insulin-Dependent Diabetes MellitusOrganOutcomeParticipantPatientsPerformancePhenotypePhysiologicalPlant RootsPlayProcessPublishingReportingResearch PersonnelResourcesRoleSignal TransductionSourceSupervisionSyndromeTestingTimeTrainingUnited States Department of Veterans AffairsUniversitiesValidationVeteransbasebiobankcase controlclinical data warehouseclinical phenotypecohortdata modelingdata warehousegastrointestinalgenetic associationgenetic profilinggenome wide association studygenome-widehuman diseaseimprovedinsightinterestmachine learning algorithmnovelnovel therapeuticsopen sourcepreventprogramssupervised learningtooltraitwhole genome
项目摘要
The Million Veteran Program (MVP) is currently the largest biobank study in the world. The resource provides
an unprecedented opportunity to identify the genetic causes of a variety of human diseases that
disproportionally affect our veterans including diseases that affect the neurological, cardiovascular, pulmonary,
gastrointestinal, endocrine, and musculoskeletal organs. Fast-paced technological progress over the last 10
years now allows us to reliably and densely profile individuals across their entire genome. Such data has
already been generated and linked to a wide spectrum of human diseases and physiologic traits. However,
many more links remain to be made which will provide the scientific community with additional important clues
on the root causes of many life-threatening diseases as well as valuable insights on how to develop new drugs
to treat or prevent these same diseases. The current challenge in making these additional discoveries is no
longer the generation of high quality genetic data in large numbers but rather the organization and querying of
very large and complex electronic health records (EHR) being leveraged by these large biobank studies. Until
now, much effort and time has been expended to painstakingly develop and validate rules-based definitions to
identify individuals with a specific disease, syndrome, or state across a variety of EHR platforms. However, the
recent mapping of the VA corporate data warehouse to the Observational Medical Outcomes Partnership
common data model (OMOP-CDM) provides us with unprecedented opportunities to apply new “electronic
phenotyping” tools that can identify individuals with a specific disease, syndrome, or state in a much more
efficient manner than rules-based methods. The goal of this proposal is to comprehensively test the ability of
one of these new tools named APHRODITE (Automated PHenotype Routine for Observational Definition,
Identification, Training and Evaluation) to identify established genetic links among MVP participants.
APHRODITE was developed at Stanford by one of our co-investigators and uses state of the art machine
learning algorithms to identify individuals with a condition in a fraction of the time it takes to identify them
through rules-based definitions. The algorithm has shown great promise within the Stanford clinical data
warehouse but requires validation in other EHR cohorts. In aim 1, we will test the accuracy of an APHRODITE
classifier to that of a rules-based classifier for at least 5 diseases using gold-standard sets in the VA. In aim 2,
we will test whether APHRODITE classifiers from aim 1 can be applied to MVP participants to replicate
established genetic associations. If automated methods in APHRODITE perform equally well or better than
rules-based methods for multiple diseases, automated methods may be leveraged for phenotypes where rules
based methods may not exist, maximizing the efficiency of genetic discovery in MVP and facilitating rapid
replication of findings within MVP in other EHRs mapped to the OMOP-CDM.
百万退伍军人计划(MVP)是目前世界上最大的生物库研究。资源提供
这是一个前所未有的机会,可以确定各种人类疾病的遗传原因,
严重影响我们的退伍军人,包括影响神经系统,心血管,肺,
胃肠道、内分泌和肌肉骨骼器官。在过去10年里,
多年的研究使我们能够可靠而密集地分析个体的整个基因组。这些数据有
已经产生并与广泛的人类疾病和生理特征有关。然而,在这方面,
还有更多的联系有待建立,这将为科学界提供更多的重要线索。
对许多危及生命的疾病的根本原因以及如何开发新药的宝贵见解
来治疗或预防这些相同的疾病。目前在这些额外的发现中面临的挑战是,
更长的时间产生大量高质量的遗传数据,而是组织和查询
这些大型生物库研究利用了非常庞大和复杂的电子健康记录(EHR)。直到
现在,已经花费了大量的精力和时间来精心开发和验证基于规则的定义,
在各种EHR平台上识别患有特定疾病、综合征或状态的个体。但
最近将VA公司数据仓库映射到观察性医学结局伙伴关系
公共数据模型(OMOP-CDM)为我们应用新的“电子”技术提供了前所未有的机会
表型分析”工具,可以识别个体与特定的疾病,综合征,或状态,在一个更
比基于规则的方法更有效。本提案的目的是全面测试
其中一个新工具名为APHRODITE(用于观察定义的自动化Phenotype例程,
鉴定、培训和评估),以确定MVP参与者之间已建立的遗传联系。
APHRODITE是由我们的合作研究者之一在斯坦福大学开发的,使用最先进的机器
学习算法,以识别个人的条件,在一小部分的时间,它需要确定他们
基于规则的定义。该算法在斯坦福大学的临床数据中显示出很大的前景
但需要在其他EHR队列中进行验证。在目标1中,我们将测试一个APHRODITE的准确性
在VA中,将基于规则的分类器与使用金标准集的至少5种疾病的基于规则的分类器进行比较。在目标2中,
我们将测试aim 1中的APHRODITE分类器是否可以应用于MVP参与者,
建立了基因关联。如果APHRODITE中的自动化方法与
基于规则的方法用于多种疾病,自动化方法可用于表型,其中规则
的方法可能不存在,最大限度地提高MVP中基因发现的效率,
在映射到OMOP-CDM的其他EHR中复制MVP中的调查结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THEMISTOCLES LEONARD ASSIMES其他文献
THEMISTOCLES LEONARD ASSIMES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THEMISTOCLES LEONARD ASSIMES', 18)}}的其他基金
Efficient electronic phenotyping using APHRODITE in the Million Veteran Program
在百万退伍军人计划中使用 APHRODITE 进行高效电子表型分析
- 批准号:
9485175 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Proteomic determinants of direct measures of insulin sensitivity
直接测量胰岛素敏感性的蛋白质组决定因素
- 批准号:
10376278 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Proteomic determinants of direct measures of insulin sensitivity
直接测量胰岛素敏感性的蛋白质组决定因素
- 批准号:
9899979 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Determinants of Insulin Mediated Glucose uptake in South Asians
南亚人胰岛素介导的葡萄糖摄取的决定因素
- 批准号:
8420522 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Determinants of Insulin Mediated Glucose uptake in South Asians
南亚人胰岛素介导的葡萄糖摄取的决定因素
- 批准号:
8111429 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Determinants of Insulin Mediated Glucose uptake in South Asians
南亚人胰岛素介导的葡萄糖摄取的决定因素
- 批准号:
8601069 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Determinants of Insulin Mediated Glucose uptake in South Asians
南亚人胰岛素介导的葡萄糖摄取的决定因素
- 批准号:
8250465 - 财政年份:2011
- 资助金额:
-- - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




