Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
基本信息
- 批准号:9024313
- 负责人:
- 金额:$ 54.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-25 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcidityAddressAdverse effectsAffectApoptosisBiomedical EngineeringBiopsyBiopsy SpecimenBioreactorsBreastBreast Cancer cell lineCell Culture TechniquesCell LineCellular SpheroidsChemicalsClinical assessmentsComplexComputer SimulationCoupledDevelopmentDiseaseDoseEngineeringExperimental ModelsExtracellular MatrixFeedbackGoalsGrowthGrowth and Development functionHumanIn VitroIntercellular FluidMalignant NeoplasmsMammary NeoplasmsMeasurementMetabolicMethodologyMethodsMicrofluidicsModelingMonitorMorphologyNecrosisNormal tissue morphologyNutrientOrganOrganoidsOutcomeOutcome StudyPatientsPatternPharmaceutical PreparationsPopulationPrimary NeoplasmPropertyResolutionRunningSystemTechnologyTestingTherapeuticThickTissuesTracerTumor TissueTumor-Derivedanticancer treatmentbasechemotherapydesigndrug efficacyimprovedin vitro Modelin vivoin vivo Modelmalignant breast neoplasmmathematical modelmicro-total analysis systemnovelpersonalized therapeuticphysical sciencepre-clinicalpressurepublic health relevancereconstructionresponsesenescencesimulationtherapeutic developmenttumortumor growthtumor microenvironmenttumorigenic
项目摘要
DESCRIPTION (provided by applicant): These studies aim to develop a new computationally driven platform to examine complex physical and chemical microenvironments utilizing organ-on-chip microfluidic bioreactor technology coupled with a predictive mathematical model of tumor growth and therapeutic response. Malignant breast tumors are highly heterogeneous in terms of their cellular composition, varying levels of oxygenation, acidity, and nutrients, as well
as local changes in the extracellular matrix. Furthermore, tumor tissue and tumor microenvironment properties can dynamically evolve not only during tumor growth but also when anticancer treatments are administered. Despite this, nearly all pre-clinical assessments of drug efficacy and optimal dosing are performed using homogeneous 2D cell cultures that do not resemble the cellular, metabolic, and physical features manifest in tumors in vivo. Such approach suffered from overly reductionist ex vivo / in vitro studies may not fully recapitulate th complexity of cancers especially the physical and chemical microenvironment. To address these issues we propose to develop an integrated quantitative platform that combines the power of organ-on-chip 3D tissue bioreactor, developed to include non-uniform fully controlled physical and chemical microenvironments, together with a 3DMultiCel math model that allows predictive testing of a broad range of microenvironmental combinations around the experimentally validated baseline. To achieve this goal in a quantitative way we have formed a transdisciplinary team consisting of cancer biologists, biomedical engineers and mathematicians, who will develop an experimental platform for individualized anticancer treatment based on physical science principles. Our long-term goal is to provide a computationally driven "lab-on-chip" platform for 3D organotypic cultures derived from patients' tumor biopsies that will be exposed to fully controlled but dynamically variable microenvironments that will be used to optimize personalized therapeutic treatments that effectively provoke breast tumor regression with minimized harmful side effects for surrounding normal tissue. Outcomes of this study will be: (i) an improved experimental platform that combines 3D culture of tumor organoids coupled with validated predictive mathematical models for the growth and response of human breast tumor organoids within realistic microenvironments; and (ii) quantitative methods that allow one to assess the dynamics of breast tumor organoid development and response to anti-tumor treatments, using mathematical modeling. Our aims are: 1. Develop a predictive methodology to assess effects of defined microenvironments on the dynamics of normal and tumorigenic breast organoids and their sensitivity to therapeutics; 2. Construct and validate in silico model-guided complex spatial and temporal microenvironmental gradients established within TTb-G reactor, and assess breast tumor organoids response to chemotherapeutics. 3. Apply our integrated computational/engineering approach to guide therapy and predict therapeutic response ex vivo and in vivo.
描述(由申请人提供):这些研究旨在开发一种新的计算驱动平台,利用片上器官微流体生物反应器技术以及肿瘤生长和治疗反应的预测数学模型来检查复杂的物理和化学微环境。恶性乳腺肿瘤在细胞组成、不同水平的氧合、酸度和营养方面具有高度异质性。
细胞外基质的局部变化。此外,肿瘤组织和肿瘤微环境特性不仅可以在肿瘤生长过程中动态变化,而且在进行抗癌治疗时也可以动态变化。尽管如此,几乎所有药物疗效和最佳剂量的临床前评估都是使用均质的二维细胞培养物进行的,这些细胞培养物与体内肿瘤中表现出的细胞、代谢和物理特征不同。这种方法遭受过度简化的离体/体外研究可能无法完全概括癌症的复杂性,尤其是物理和化学微环境。为了解决这些问题,我们建议开发一个集成的定量平台,该平台结合了片上器官 3D 组织生物反应器的强大功能,该反应器的开发包括非均匀完全控制的物理和化学微环境,以及 3DMultiCel 数学模型,该模型允许围绕实验验证的基线对各种微环境组合进行预测测试。为了定量地实现这一目标,我们组建了一个由癌症生物学家、生物医学工程师和数学家组成的跨学科团队,他们将开发基于物理科学原理的个体化抗癌治疗实验平台。我们的长期目标是为源自患者肿瘤活检的 3D 器官型培养物提供一个计算驱动的“芯片实验室”平台,这些培养物将暴露于完全受控但动态变化的微环境中,用于优化个性化治疗,有效促进乳腺肿瘤消退,同时最大限度地减少对周围正常组织的有害副作用。这项研究的成果将是:(i) 一个改进的实验平台,将肿瘤类器官的 3D 培养与经过验证的预测数学模型相结合,用于现实微环境中人类乳腺肿瘤类器官的生长和反应; (ii) 定量方法,允许人们使用数学模型评估乳腺肿瘤类器官发育的动态和对抗肿瘤治疗的反应。我们的目标是: 1. 开发一种预测方法来评估特定微环境对正常和致瘤性乳腺类器官动态及其对治疗敏感性的影响; 2. 构建并验证 TTb-G 反应器内建立的计算机模型引导的复杂空间和时间微环境梯度,并评估乳腺肿瘤类器官对化疗的反应。 3. 应用我们的集成计算/工程方法来指导治疗并预测体外和体内的治疗反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(5)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LISA Joy MCCAWLEY其他文献
LISA Joy MCCAWLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LISA Joy MCCAWLEY', 18)}}的其他基金
Organ-on-chip bioreactors for recreating breast to brain metastases
用于重建乳腺至脑转移瘤的器官芯片生物反应器
- 批准号:
10416014 - 财政年份:2021
- 资助金额:
$ 54.71万 - 项目类别:
Organ-on-chip bioreactors for recreating breast to brain metastases
用于重建乳腺至脑转移瘤的器官芯片生物反应器
- 批准号:
10173462 - 财政年份:2021
- 资助金额:
$ 54.71万 - 项目类别:
Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
- 批准号:
9762592 - 财政年份:2015
- 资助金额:
$ 54.71万 - 项目类别:
Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
- 批准号:
9150548 - 财政年份:2015
- 资助金额:
$ 54.71万 - 项目类别:
Physical Dynamics of Cancer Response to Chemotherapy in 3D Microenvironments
3D 微环境中癌症对化疗反应的物理动力学
- 批准号:
9543230 - 财政年份:2015
- 资助金额:
$ 54.71万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8326164 - 财政年份:2010
- 资助金额:
$ 54.71万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8727028 - 财政年份:2010
- 资助金额:
$ 54.71万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8534852 - 财政年份:2010
- 资助金额:
$ 54.71万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
8145679 - 财政年份:2010
- 资助金额:
$ 54.71万 - 项目类别:
Matrix Metalloproteinase Regulation of Leukocyte Infiltration during Wound Repair
伤口修复过程中基质金属蛋白酶对白细胞浸润的调节
- 批准号:
7987568 - 财政年份:2010
- 资助金额:
$ 54.71万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 54.71万 - 项目类别:
Research Grant