Microtubule control of septic inflammation
化脓性炎症的微管控制
基本信息
- 批准号:8862776
- 负责人:
- 金额:$ 31.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenActomyosinAcute Lung InjuryAgeAgonistAnti-Inflammatory AgentsAnti-inflammatoryBiological PreservationBlood VesselsCause of DeathCell Adhesion MoleculesCellsCoagulation ProcessCritical IllnessCytokine SignalingCytoskeletonDataDeacetylationDevelopmentDiseaseDisseminated Intravascular CoagulationDown-RegulationElderlyEndothelial CellsEndotheliumEquilibriumEventExtravasationFunctional disorderGenus staphylococcusGram-Negative BacteriaGram-Positive BacteriaGrowth FactorGuanine Nucleotide Exchange FactorsHDAC6 geneHeatingHistone DeacetylaseImmune responseIncidenceInfectionInflammationInflammation MediatorsInflammatoryInflammatory ResponseInterleukin-6InvestigationLeadLungLung InflammationMechanicsMicrotubule AlterationMicrotubule StabilizationMicrotubulesModelingMolecularMonomeric GTP-Binding ProteinsMorbidity - disease rateMultiple Organ FailureOrganOrganismPathologicPatientsPermeabilityPlayPopulationProcessReactionRegulationRoleSTAT3 geneSepsisSepsis SyndromeSignal PathwaySignal TransductionSourceStaphylococcus aureusSyndromeTestingTubulinUnited StatesUrinary tractVascular Endothelial CellVascular EndotheliumWorkchemokinecytokineeffective therapyin vivoinflammatory modulationinhibitor/antagonistkillingsmortalitynovelpathogenprotein complexpublic health relevancerhoseptictargeted treatmenttherapy design
项目摘要
DESCRIPTION (provided by applicant): Severe sepsis is a common, expensive, and frequently fatal condition which is the leading cause of death in the ICU in the United States. It s especially common in the elderly and is likely to increase substantially as the U.S. population ages. Sepsis develops as a result of the host response to infection, and often presents as systemic inflammatory response syndrome (SIRS), but may also develop into multiple organ failure (MOF) with vascular endothelial inflammation and lung dysfunction among major fatal complications in critically ill patients. Typically, 50% of all sepsis cases start as an infection n the lungs. In the last decade, gram-positive bacteria, most commonly staphylococci, are thought to cause more than 50% of cases of sepsis. Activated vascular endothelium plays a key role in propagation of inflammation by increasing the extravasation of inflammatory cells, cytokines and chemokines. Endothelial inflammation and barrier compromise in septic conditions may lead to multiple organ dysfunction and disseminated intravascular coagulation. Although the essential role of endothelium in these events is well recognized, precise mechanisms modulating inflammatory activation of vascular endothelium in septic conditions are poorly understood. Our previous studies defined the role of microtubule dynamics in the disruption of lung endothelial barrier and vascular leak caused by vasoactive growth factors and agonists. However, the involvement of microtubule-dependent mechanisms in endothelial inflammatory processes awaits further investigation. The central hypothesis supported by our novel preliminary data which will be tested in this application is that activation of microtubule-specific histone deacetylase HDAC6 in endothelial cells challenged with Staphylococcus aureus causes microtubule destabilization and reduction in anti-inflammatory activity of microtubule-associated Suppressor Of Cytokine Signaling, SOCS3. As a result of SOCS3 inactivation, augmented Jak2/STAT3 signaling will unleash cytokine release and exacerbate ongoing inflammatory reaction to bacterial pathogen causing collateral damage of the host organism. We speculate that stabilization of the microtubules via inhibition of HDAC6 leading to preservation of SOCS3 activity may protect against excessive septic inflammation. Aim-1 will characterize the changes in endothelial microtubule dynamics and their regulation by HDAC6 in the models of lung septic inflammation; AIm-2 will examine how altered microtubule dynamics modulate SOCS3-dependent inflammatory signaling induced by bacterial pathogens; and Aim-3 will study the role of microtubule-associated signaling in the modulation of inflammatory response in vivo. We believe that this study will identify new targets for therapies designed to blunt sepsis-activated pathologic signaling circuits and may result in a breakthrough in current practices of sepsis treatment.
描述(由申请人提供):严重脓毒症是一种常见、昂贵且经常致命的疾病,是美国ICU的主要死亡原因。这种情况在老年人中尤其常见,而且随着美国人口老龄化,这种情况可能会大幅增加。脓毒症是由于宿主对感染的反应而发生的,通常表现为全身炎症反应综合征(SIRS),但也可能发展为多器官衰竭(MOF),伴血管内皮炎症和肺功能障碍,是危重患者的主要致命并发症。通常,50%的败血症病例开始于肺部感染。在过去的十年中,革兰氏阳性菌,最常见的葡萄球菌,被认为是导致超过50%的败血症病例。活化的血管内皮通过增加炎性细胞、细胞因子和趋化因子的外渗在炎症传播中起关键作用。脓毒症条件下的内皮炎症和屏障受损可能导致多器官功能障碍和弥散性血管内凝血。虽然内皮在这些事件中的重要作用是公认的,但在脓毒症条件下调节血管内皮炎症活化的精确机制知之甚少。我们以前的研究确定了微管动力学在血管活性生长因子和激动剂引起的肺内皮屏障破坏和血管渗漏中的作用。然而,微管依赖性机制在内皮炎症过程中的参与有待进一步研究。由我们的新的初步数据支持的中心假设将在本申请中进行测试,该中心假设是在用金黄色葡萄球菌攻击的内皮细胞中微管特异性组蛋白脱乙酰酶HDAC 6的活化导致微管不稳定和微管相关的细胞因子信号传导抑制因子SOCS 3的抗炎活性的降低。作为SOCS 3失活的结果,增强的Jak 2/STAT 3信号传导将释放细胞因子释放并加剧对细菌病原体的持续炎症反应,从而引起宿主生物体的附带损伤。我们推测,通过抑制HDAC 6导致SOCS 3活性的保留来稳定微管可能会防止过度的脓毒性炎症。Aim-1将表征肺脓毒性炎症模型中内皮微管动力学的变化及其由HDAC 6调节; AIm-2将研究改变的微管动力学如何调节由细菌病原体诱导的SOCS 3依赖性炎症信号传导; Aim-3将研究微管相关信号传导在体内炎症反应调节中的作用。我们相信,这项研究将确定新的治疗目标,旨在钝化脓毒症激活的病理信号通路,并可能导致目前的脓毒症治疗实践的突破。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Birukova其他文献
Anna Birukova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Birukova', 18)}}的其他基金
GPR68 as a novel modulator of septic lung injury
GPR68 作为脓毒性肺损伤的新型调节剂
- 批准号:
10743219 - 财政年份:2023
- 资助金额:
$ 31.21万 - 项目类别:
Mechanisms of microvascular endothelial cell injury caused by extracellular histones
细胞外组蛋白致微血管内皮细胞损伤的机制
- 批准号:
10679043 - 财政年份:2021
- 资助金额:
$ 31.21万 - 项目类别:
Control of septic inflammation and lung microvascular endothelial barrier by cell junction signaling nexus
通过细胞连接信号连接控制化脓性炎症和肺微血管内皮屏障
- 批准号:
10207865 - 财政年份:2021
- 资助金额:
$ 31.21万 - 项目类别:
Control of septic inflammation and lung microvascular endothelial barrier by cell junction signaling nexus
通过细胞连接信号连接控制化脓性炎症和肺微血管内皮屏障
- 批准号:
10631107 - 财政年份:2021
- 资助金额:
$ 31.21万 - 项目类别:
Control of septic inflammation and lung microvascular endothelial barrier by cell junction signaling nexus
通过细胞连接信号连接控制化脓性炎症和肺微血管内皮屏障
- 批准号:
10412071 - 财政年份:2021
- 资助金额:
$ 31.21万 - 项目类别:
Mechanisms of microvascular endothelial cell injury caused by extracellular histones
细胞外组蛋白致微血管内皮细胞损伤的机制
- 批准号:
10294004 - 财政年份:2021
- 资助金额:
$ 31.21万 - 项目类别:
Differential mechano-signaling in vascular endothelium by varying degrees of mechanical stretch - Resubmission 01
通过不同程度的机械拉伸在血管内皮中产生差异性机械信号 - 重新提交 01
- 批准号:
9167172 - 财政年份:2016
- 资助金额:
$ 31.21万 - 项目类别:
Differential mechano-signaling in vascular endothelium by varying degrees of mechanical stretch - Resubmission 01
通过不同程度的机械拉伸在血管内皮中产生差异性机械信号 - 重新提交 01
- 批准号:
9280991 - 财政年份:2016
- 资助金额:
$ 31.21万 - 项目类别:
Differential mechano-signaling in vascular endothelium by varying degrees of mechanical stretch - Resubmission 01
通过不同程度的机械拉伸在血管内皮中产生差异性机械信号 - 重新提交 01
- 批准号:
9754858 - 财政年份:2016
- 资助金额:
$ 31.21万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 31.21万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 31.21万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 31.21万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 31.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 31.21万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 31.21万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 31.21万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 31.21万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 31.21万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 31.21万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




