Multiscale modeling of G protein-coupled receptors
G 蛋白偶联受体的多尺度建模
基本信息
- 批准号:8895982
- 负责人:
- 金额:$ 26.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:ADRB2 geneAdrenergic ReceptorBehaviorBiophysicsCNR2 geneCell Signaling ProcessCollaborationsComputing MethodologiesDataDimerizationDrug TargetingElementsEventFamilyG-Protein-Coupled ReceptorsGTP-Binding ProteinsGoalsHuman GenomeHydration statusIntegral Membrane ProteinInvestmentsKnowledgeLeftLigand BindingLigandsMachine LearningMembrane ProteinsMethodsModelingMotionOpsinPattern RecognitionPharmaceutical PreparationsPharmacologic SubstancePlayProcessProtein BindingProtein FamilyProteinsReceptor ActivationResearchResearch PersonnelResourcesRetinalRhodopsinRoleRunningSeriesStagingStructureTechniquesTestingWaterWorkcostdesignfollow-upinhibitor/antagonistinsightinterestlaptopmammalian genomemetarhodopsin Imetarhodopsin IImolecular dynamicsmulti-scale modelingnetwork modelsnovelprotein structurereceptor functionresearch studysignal processingsimulationsupercomputertemporal measurementtherapeutic development
项目摘要
DESCRIPTION (provided by applicant): The G protein-coupled receptors (GPCRs) are the largest family in the mammalian genome, and are critical to a number of cell signaling processes. As a result, they are of enormous biomedical importance; by some estimates, as many as 50% of new pharmaceuticals target GPCRs. Unsurprisingly, there has been a huge research investment in understanding their biophysics. However, integral membrane proteins are challenging to work with experimentally, leaving an opportunity for computational methods to make a significant contribution. We will use multiscale modeling techniques, including all-atom molecular dynamics simulations and elastic network models, to explore the behavior of several GPCRs, including rhodopsin (and its retinal-free form, opsin) and the �2-adrenergic receptor (B2AR). Specifically, we will investigate the role of ligand binding in modulating GPCR function, via two separate all-atom molecular dynamics calculations. Microsecond-scale simulations of opsin will, when contrasted with our previous work on rhodopsin in the dark state and during the early stages of activation, allow us to see which interactions in rhodopsin are determined by the presence of the ligand, while the planned simulations of the full activation process will give the first atomic-level view of the structural changes involved in GPCR activation; this knowledge could be critical to the design of novel inhibitors to other GPCRs. The second goal of this proposal is to clarify the role of internal waters in the activation mechanism of GPCRs; our previous simulations described significant increases in the internal hydration of rhodopsin and B2AR. Here, we propose to pursue those observations more rigorously, using automatic pattern recognition methods to correlate hydration changes with functionally interesting protein motions in simulations of rhodopsin, B2AR, and the cannabinoid-2 receptor (CB2). The third goal of the proposal is to develop elastic network models - a simple, computationally inexpensive approach where the protein's interactions are represented as a network of springs - in order to explore larger scale problems not readily amenable to all-atom molecular dynamics, like the modulation of protein motions by G protein binding and GPCR oligomerization. A number of possible network model implementations will be considered, and the models will be carefully validated by quantitative comparison to extensive molecular dynamics simulations, including those proposed for the first aim. The fourth and final goal of the proposal is to assess the validity of a common assumption, that rhodopsin is a good template for understanding GPCR activation in general. To test this hypothesis we will apply multiple computational methods, including long timescale molecular dynamics and elastic network models, to a series of GPCRs, including rhodopsin, opsin, B2AR, and CB2. We will quantitatively correlate the fluctuations of the different GPCRs, with the hypothesis that motions conserved across multiple GPCRs are likely to be functionally significant.
描述(申请人提供):G蛋白偶联受体(GPCRs)是哺乳动物基因组中最大的家族,在许多细胞信号传递过程中起着关键作用。因此,它们具有巨大的生物医学重要性;据估计,多达50%的新药针对GPCRs。不出所料,为了了解它们的生物物理学,已经有了巨大的研究投资。然而,完整的膜蛋白在实验上是具有挑战性的,这给计算方法留下了一个做出重大贡献的机会。我们将使用多尺度建模技术,包括全原子分子动力学模拟和弹性网络模型,来探索几种GPCR的行为,包括视紫红质(及其无视网膜形式的OPTIN)和�2肾上腺素能受体(B2AR)。具体地说,我们将通过两个独立的全原子分子动力学计算来研究配体结合在调节GPCR功能中的作用。与我们以前对暗状态下的视紫红质和激活早期阶段的工作相比,对视紫红质的微秒级模拟将使我们能够看到视紫红质中的哪些相互作用是由配体的存在决定的,而计划中的完全激活过程的模拟将给出第一个原子水平的视角来了解GPCR激活过程中涉及的结构变化;这一知识可能对于设计其他GPCRs的新型抑制剂至关重要。这项建议的第二个目标是阐明内部水在GPCRs激活机制中的作用;我们之前的模拟描述了视紫红质和B2AR内部水合作用的显着增加。在这里,我们建议更严格地追求这些观察结果,使用自动模式识别方法在模拟视紫红质、B2AR和大麻素-2受体(CB2)中将水化变化与有趣的蛋白质运动联系起来。该提案的第三个目标是开发弹性网络模型--一种简单、计算成本低的方法,将蛋白质的相互作用表示为一个弹簧网络--以探索不容易服从全原子分子动力学的更大规模的问题,如G蛋白结合和GPCR寡聚对蛋白质运动的调节。将考虑一些可能的网络模型实现,并将通过与广泛的分子动力学模拟(包括为第一个目标提出的模拟)的定量比较来仔细验证这些模型。该提案的第四个也是最后一个目标是评估一个共同假设的有效性,即视紫红质是理解gpr激活的良好模板。为了验证这一假设,我们将应用多种计算方法,包括长时间尺度分子动力学和弹性网络模型,用于一系列GPCR,包括视紫红质、视蛋白、B2AR和CB2。我们将定量关联不同GPCR的波动,假设跨多个GPCR守恒的运动可能在功能上具有重要意义。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coarse-grained molecular dynamics provides insight into the interactions of lipids and cholesterol with rhodopsin.
粗粒度分子动力学可以深入了解脂质和胆固醇与视紫红质的相互作用。
- DOI:10.1007/978-94-007-7423-0_5
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Horn,JoshuaN;Kao,Ta-Chun;Grossfield,Alan
- 通讯作者:Grossfield,Alan
Lipids Alter Rhodopsin Function via Ligand-like and Solvent-like Interactions.
脂质通过类配体和类溶剂相互作用改变视紫红质功能。
- DOI:10.1016/j.bpj.2017.11.021
- 发表时间:2018
- 期刊:
- 影响因子:3.4
- 作者:Salas-Estrada,LeslieA;Leioatts,Nicholas;Romo,TodD;Grossfield,Alan
- 通讯作者:Grossfield,Alan
Special issue on lipid-protein interactions.
关于脂质-蛋白质相互作用的特刊。
- DOI:10.1016/j.chemphyslip.2013.04.001
- 发表时间:2013
- 期刊:
- 影响因子:3.4
- 作者:Grossfield,Alan
- 通讯作者:Grossfield,Alan
Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors.
基于笛卡尔张量计算多极能量和梯度的通用且高效的算法。
- DOI:10.1063/1.4930984
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Lin,Dejun
- 通讯作者:Lin,Dejun
Unknown unknowns: the challenge of systematic and statistical error in molecular dynamics simulations.
- DOI:10.1016/j.bpj.2014.03.007
- 发表时间:2014-04
- 期刊:
- 影响因子:3.4
- 作者:T. Romo;A. Grossfield
- 通讯作者:T. Romo;A. Grossfield
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Grossfield其他文献
Alan Grossfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Grossfield', 18)}}的其他基金
Developing computational methods to determine the thermodynamics of lipid phase coexistence
开发计算方法来确定脂相共存的热力学
- 批准号:
10042128 - 财政年份:2020
- 资助金额:
$ 26.27万 - 项目类别:
Developing computational methods to determine the thermodynamics of lipid phase coexistence
开发计算方法来确定脂相共存的热力学
- 批准号:
10204062 - 财政年份:2020
- 资助金额:
$ 26.27万 - 项目类别:
Multiscale modeling of G protein-coupled receptors
G 蛋白偶联受体的多尺度建模
- 批准号:
8020805 - 财政年份:2011
- 资助金额:
$ 26.27万 - 项目类别:
Multiscale modeling of G protein-coupled receptors
G 蛋白偶联受体的多尺度建模
- 批准号:
8689100 - 财政年份:2011
- 资助金额:
$ 26.27万 - 项目类别:
Multiscale modeling of G protein-coupled receptors
G 蛋白偶联受体的多尺度建模
- 批准号:
8324207 - 财政年份:2011
- 资助金额:
$ 26.27万 - 项目类别:
Multiscale modeling of G protein-coupled receptors
G 蛋白偶联受体的多尺度建模
- 批准号:
8502702 - 财政年份:2011
- 资助金额:
$ 26.27万 - 项目类别:
Helix Packing and Ligand Binding in Dopamine Receptors
多巴胺受体中的螺旋堆积和配体结合
- 批准号:
6540537 - 财政年份:2002
- 资助金额:
$ 26.27万 - 项目类别:
Helix Packing and Ligand Binding in Dopamine Receptors
多巴胺受体中的螺旋堆积和配体结合
- 批准号:
6606961 - 财政年份:2002
- 资助金额:
$ 26.27万 - 项目类别:
Helix Packing and Ligand Binding in Dopamine Receptors
多巴胺受体中的螺旋堆积和配体结合
- 批准号:
6341406 - 财政年份:2001
- 资助金额:
$ 26.27万 - 项目类别:
相似海外基金
Structural basis for regulation of beta2 adrenergic receptor signaling by the dynamic post-translational modification S-palmitoylation
动态翻译后修饰S-棕榈酰化调节β2肾上腺素受体信号传导的结构基础
- 批准号:
10603466 - 财政年份:2023
- 资助金额:
$ 26.27万 - 项目类别:
Modulation of T lymphocyte Activation by Ã2-Adrenergic Receptor Signalling Pathways
α2-肾上腺素能受体信号通路对 T 淋巴细胞激活的调节
- 批准号:
RGPIN-2019-06980 - 财政年份:2022
- 资助金额:
$ 26.27万 - 项目类别:
Discovery Grants Program - Individual
Glucocorticoid and Adrenergic Receptor Signaling at the Neuroimmune Interface
神经免疫界面的糖皮质激素和肾上腺素能受体信号传导
- 批准号:
RGPIN-2019-04706 - 财政年份:2022
- 资助金额:
$ 26.27万 - 项目类别:
Discovery Grants Program - Individual
Modulation of T lymphocyte Activation by ß2-adrenergic Receptor Signalling Pathways
α2-肾上腺素能受体信号通路对 T 淋巴细胞激活的调节
- 批准号:
574979-2022 - 财政年份:2022
- 资助金额:
$ 26.27万 - 项目类别:
University Undergraduate Student Research Awards
Angiotensin-(1-7) and beta adrenergic receptor signaling in aging
衰老过程中血管紧张素 (1-7) 和 β 肾上腺素受体信号传导
- 批准号:
10629280 - 财政年份:2022
- 资助金额:
$ 26.27万 - 项目类别:
Angiotensin-(1-7) and beta adrenergic receptor signaling in aging
衰老过程中血管紧张素 (1-7) 和 β 肾上腺素受体信号传导
- 批准号:
10448574 - 财政年份:2022
- 资助金额:
$ 26.27万 - 项目类别:
Novel regulation of beta-adrenergic receptor function by phosphoinositide 3-kinase
磷酸肌醇 3-激酶对 β-肾上腺素能受体功能的新调节
- 批准号:
10591688 - 财政年份:2022
- 资助金额:
$ 26.27万 - 项目类别:
Modulation of T lymphocyte Activation by Ã2-adrenergic Receptor Signalling Pathways
α2-肾上腺素能受体信号通路对 T 淋巴细胞激活的调节
- 批准号:
574984-2022 - 财政年份:2022
- 资助金额:
$ 26.27万 - 项目类别:
University Undergraduate Student Research Awards
Modulation of T lymphocyte Activation by ß2-adrenergic Receptor Signalling Pathways
α2-肾上腺素能受体信号通路对 T 淋巴细胞激活的调节
- 批准号:
574985-2022 - 财政年份:2022
- 资助金额:
$ 26.27万 - 项目类别:
University Undergraduate Student Research Awards
The molecular mechanism of the crosstalk between the beta-2 adrenergic receptor and chemokine receptors in lymphocytes
淋巴细胞β2肾上腺素受体与趋化因子受体串扰的分子机制
- 批准号:
22K07118 - 财政年份:2022
- 资助金额:
$ 26.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)