Structure and Function of Hetero-multimeric Glutamate Receptors
异多聚谷氨酸受体的结构和功能
基本信息
- 批准号:8631945
- 负责人:
- 金额:$ 35.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-08 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsAgonistAllosteric RegulationAlzheimer&aposs DiseaseArchitectureBaculovirusesBindingBiochemicalBrainCalciumComplexCrystallizationCrystallographyCytosolDetectionDevelopmentDiseaseEarly PromotersElectrophysiology (science)ElementsExtracellular DomainFamilyG-Protein-Coupled ReceptorsGated Ion ChannelGlutamate ReceptorGlutamatesGlycineGoalsGuidelinesHeterogeneityIon ChannelKnowledgeLigand Binding DomainLigandsMK801MagnesiumMammalsMediatingMemantineMembraneMembrane ProteinsMental DepressionMethodologyMethodsMolecularMolecular ConformationMolecular StructureN-Methyl-D-Aspartate ReceptorsNeurotransmittersParkinson DiseasePatternPeptide HydrolasesPermeabilityPhosphotransferasesPhysiologyPlayProductionPropertyProtein SubunitsProteinsPublic HealthRNA SplicingRecombinantsRegulationResearchResolutionRoleSamplingSchizophreniaSeizuresShapesStrokeStructureStructure-Activity RelationshipSynaptic TransmissionSynaptic plasticitySystemTechniquesTherapeuticTransmembrane DomainTreatment EfficacyVariantbaseconformational alterationdesigndimerinhibitor/antagonistinsightnervous system disordernovelpostsynapticpresynapticprotein complexpublic health relevancereceptorresearch studyscreeningstemstructural biologysuccessvoltage
项目摘要
PROJECT SUMMARY
The overall goal of the research studies proposed here is to obtain high-resolution structures of intact hetero-
multimeric N-methyl-D-aspartate receptors (NMDARs). NMDARs belong to the family of ionotropic glutamate
receptors, which mediate the majority of excitatory synaptic transmission in mammalian brains. Dysfunctional
NMDARs are implicated in various neurological disorders and diseases including schizophrenia, depression,
Alzheimer's disease, and Parkinson's disease. A unique aspect of NMDARs is that they are obligatory hetero-
tetramers or higher oligomers composed of GluN1 and GluN2 (A-D) or GluN3 (A-B) subunits. Opening of
NMDAR ion channels requires binding of glycine to GluN1 and GluN3 and glutamate to GluN2. To date,
structural studies of NMDARs have been limited to the hetero-dimeric structures of the GluN1 and GluN2
extracellular domains. Thus, there is no clear knowledge on how subunits and domains are arranged to form
hetero-multimeric ion channels and how transmembrane ion channel pores are shaped to confer specific
properties of NMDAR ion channels including high calcium conductance and voltage-dependent magnesium
block. Despite various technological breakthroughs, success in crystallographic studies on eukaryotic
membrane proteins has been limited due to difficulties in expression, purification, and crystallization stemming
from sample heterogeneity and instability. Importantly, there has been no crystal structure of eukaryotic hetero-
multimeric membrane proteins that are recombinantly produced to date. The fact that numerous ion channels,
G protein-coupled receptors, receptor kinases, and intramembrane proteases implicated in neurological
diseases exist as hetero-multimers in native states points to the great need for structural studies on hetero-
multimeric membrane proteins. To obtain the first crystal structure of hetero-multimeric ion channels and to
understand the structure-function relationship of NMDARs, we will conduct research with the following two
aims: Aim 1 is to produce intact hetero-multimeric NMDAR proteins using our novel methodology and to
biochemical characterize the homogeneously purified proteins; and Aim 2 is to complete structural analysis of
intact NMDARs in complex with various ligands reflecting different functional states by applying cutting-edge
techniques in membrane protein crystallography and validate structure-based functional hypotheses by
biochemical and electrophysiological experiments. Successful completion of the proposed studies is expected
to result in the first crystal structure of a hetero-multimeric ion channel and to provide a mechanistic
understanding of NMDARs that are critical in brain physiology and development. Importantly, the structural
information obtained here will also provide strategies to develop compounds with therapeutic efficacy in
neurological disorders and diseases. Furthermore, these studies on NMDARs will establish fundamental
guidelines for crystallography on hetero-multimeric membrane proteins.
项目总结
研究的总体目标是获得完整的异质结构的高分辨率结构。
多聚体N-甲基-D-天冬氨酸受体(NMDAR)。NMDAR属于离子型谷氨酸家族
受体,它介导了哺乳动物大脑中大部分兴奋性突触传递。功能失调
NMDAR与各种神经疾病和疾病有关,包括精神分裂症、抑郁症、
阿尔茨海默氏症和帕金森氏症。NMDAR的一个独特方面是它们是强制性的异种-
由GluN1和GluN2(A-D)或GluN3(A-B)亚基组成的四聚体或更高的低聚物。开业
NMDAR离子通道需要甘氨酸与GluN1和GluN3结合,谷氨酸与GluN2结合。到目前为止,
NMDAR的结构研究仅限于GluN1和GluN2的异二聚体结构
胞外结构域。因此,对于亚基和结构域是如何排列形成的,没有明确的知识
异质多聚体离子通道及其跨膜离子通道孔是如何形成的
NMDAR离子通道的高钙电导和电压依赖性镁离子通道的特性
阻止。尽管有各种技术突破,但真核生物的结晶学研究取得了成功
膜蛋白由于表达、纯化和结晶困难而受到限制。
来自样品的异质性和不稳定性。重要的是,目前还没有真核生物异源的晶体结构。
到目前为止已重组生产的多聚膜蛋白。事实上,许多离子通道,
神经学中涉及的G蛋白偶联受体、受体激酶和膜内蛋白酶
疾病以天然状态下的异源多聚体的形式存在,这表明对异源多聚体的结构研究非常必要。
多聚体膜蛋白。获得了异质多聚离子通道的第一晶体结构,并
了解NMDAR的结构-功能关系,我们将进行以下两个方面的研究
目标:目标1是使用我们的新方法生产完整的异源多聚体NMDAR蛋白,并
对均一纯化的蛋白质进行生化表征;目标2是完成对
应用尖端技术在不同配体反映不同功能状态的复合体中完整的NMDAR
膜蛋白结晶学技术和验证基于结构的功能假说
生化和电生理实验。建议的研究可望顺利完成。
以产生异质多聚体离子通道的第一晶体结构,并提供一种
了解对大脑生理学和发育至关重要的NMDAR。重要的是,结构性的
在这里获得的信息也将为开发具有治疗效果的化合物提供策略。
神经紊乱和疾病。此外,这些关于NMDAR的研究将为
异质多聚体膜蛋白的结晶学指南。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hiroyasu Furukawa其他文献
Hiroyasu Furukawa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hiroyasu Furukawa', 18)}}的其他基金
Structure and function of hetero-multimeric ligand-gated ion channels
异多聚配体门控离子通道的结构和功能
- 批准号:
10357877 - 财政年份:2019
- 资助金额:
$ 35.91万 - 项目类别:
Structure and function of hetero-multimeric ligand-gated ion channels
异多聚配体门控离子通道的结构和功能
- 批准号:
9905566 - 财政年份:2019
- 资助金额:
$ 35.91万 - 项目类别:
Structure and function of hetero-multimeric ligand-gated ion channels
异多聚配体门控离子通道的结构和功能
- 批准号:
10593042 - 财政年份:2019
- 资助金额:
$ 35.91万 - 项目类别:
Structure and Function of Hetero-multimeric Glutamate Receptors
异多聚谷氨酸受体的结构和功能
- 批准号:
8847340 - 财政年份:2014
- 资助金额:
$ 35.91万 - 项目类别:
Structure and Function of Hetero-multimeric Glutamate Receptors
异多聚谷氨酸受体的结构和功能
- 批准号:
9034604 - 财政年份:2014
- 资助金额:
$ 35.91万 - 项目类别:
Structure and Function of Hetero-multimeric Glutamate Receptors
异多聚谷氨酸受体的结构和功能
- 批准号:
9249073 - 财政年份:2014
- 资助金额:
$ 35.91万 - 项目类别:
STRUCTURE AND FUNCTION OF HETERO-MULTIMERIC GLUTAMATE RECEPTORS
异源多聚谷氨酸受体的结构和功能
- 批准号:
9026103 - 财政年份:2014
- 资助金额:
$ 35.91万 - 项目类别:
Structure and Function of Hetero-multimeric Glutamate Receptors
异多聚谷氨酸受体的结构和功能
- 批准号:
9276955 - 财政年份:2014
- 资助金额:
$ 35.91万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 35.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




