Environmental regulation of gene expression dissected by microfluidics
微流体剖析基因表达的环境调控
基本信息
- 批准号:8786073
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-13 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAdhesionsAffectBacteriaBehaviorBehavior ControlCarbohydratesCatabolismCellsChemicalsCommunicable DiseasesCommunitiesCompetenceComplexCuesDNADataDental EnamelDental PlaqueDental cariesDietary CarbohydratesDiffusionEnvironmentEquilibriumFeedbackFermentationGene ActivationGene ExpressionGene Expression RegulationGene FusionGenesGeneticGoalsHealthHumanIn VitroIndividualLaser Scanning Confocal MicroscopyLightLinkLocationMeasuresMethodsMicrobial BiofilmsMicrofluidic MicrochipsMicrofluidicsModelingMouth DiseasesNatureNutrientOral healthOrganismOutputOxygenPatternPeptide Signal SequencesPeptide TransportPeptidesPopulationProcessPropertyReadingRegulationRegulonReporter GenesResearchRoleShapesSignal PathwaySignal TransductionStreptococcus mutansStructureStudy modelsSystemTestingTissuesTooth DiseasesVariantVirulenceextracellularimprovedintercellular communicationnoveloral biofilmpathogenresponsesmall moleculesuccesstrait
项目摘要
DESCRIPTION (provided by applicant): The human dental plaque biofilm is a physically and chemically complex environment that is inhabited by a many bacterial species, including Streptococcus mutans, which is regarded as the primary etiological cause of human dental caries. S. mutans has a number of behaviors that give rise to its virulence, and it regulates and activates these behaviors through the use of chemical cues received from its environment. However, the local environment of S. mutans at different locations within a biofilm may be chemically and physically different, subject to substantial variation in pH, oxygen concentration and nutrient availability, as well as different balances of colonizing species and different concentrations of the small molecules that allow the bacteria to communicate and regulate virulence behaviors. This project seeks to determine how this diversity of microenvironments affects the centrally important S. mutans virulence behavior known as genetic competence. Competence is the ability to take up extracellular DNA, and the genetic network that regulates competence in S. mutans is closely intertwined with the mechanisms that regulate virtually every other cariogenic trait of the organism. The competence genes are extremely sensitive to environmental conditions and to the nature of the chemical signals received. Expression of competence genes across a population of cells can be uniform or can involve activation of only a subset of the bacteria. Therefore a broad scientific goal is to understand how S. mutans processes or interprets environmental signals to regulate competence and other virulence behaviors, how microenvironments in the biofilm affect this processing, and how competence genes are activated at the cell-to-cell level throughout an oral biofilm. This project will focus o identifying and understanding the genetic "switches" that control S. mutans competence, exploring how pH, oxygen concentration, and carbohydrate availability affect the regulation of competence by peptide signals, and studying and modeling the ways that competence is regulated by peptide signals inside an S. mutans biofilm. The project will accomplish these goals through a novel microfluidic, single-cell approach. This method allows multiple, well-defined environmental inputs to be supplied to subpopulations of S. mutans cells while the profile of competence gene activation across those subpopulations is measured and modeled quantitatively. The project will yield detailed information about how S. mutans competence is spatially distributed in an oral biofilm and what kinds of chemical conditions trigger this and related virulence behaviors. Success in achieving these objectives will advance research in human oral health by improving the understanding of how Streptococcus mutans causes dental disease.
描述(由申请人提供):人类牙菌斑生物膜是一个物理和化学复杂的环境,由许多细菌物种居住,包括变形链球菌,它被认为是人类龋齿的主要病因。变形链球菌有许多导致其毒性的行为,它通过使用从环境中接收的化学信号来调节和激活这些行为。然而,变形链球菌在生物膜内不同位置的局部环境可能在化学和物理上不同,这取决于pH值、氧浓度和养分有效性的巨大变化,以及定殖物种的不同平衡和允许细菌交流和调节毒力行为的小分子浓度的不同。该项目旨在确定这种微环境的多样性如何影响被称为遗传能力的中心重要的变形链球菌毒力行为。能力是吸收细胞外DNA的能力,而在变形链球菌中调节能力的遗传网络与调节生物体几乎所有其他致龋性状的机制密切相关。能力基因对环境条件和接收到的化学信号的性质极为敏感。能力基因在细胞群中的表达可以是一致的,也可以只激活一部分细菌。因此,一个广泛的科学目标是了解变形链球菌如何处理或解释环境信号来调节能力和其他毒力行为,生物膜中的微环境如何影响这种处理,以及能力基因如何在整个口腔生物膜的细胞-细胞水平上被激活。本项目将专注于识别和理解控制变形链球菌能力的基因“开关”,探索pH值、氧浓度和碳水化合物可用性如何通过肽信号影响能力的调节,并研究变形链球菌生物膜内肽信号调节能力的方式和建模。该项目将通过一种新颖的微流体单细胞方法来实现这些目标。该方法允许向变形链球菌细胞亚群提供多个定义良好的环境输入,同时对这些亚群的能力基因激活概况进行测量和定量建模。该项目将提供关于变形链球菌能力如何在口腔生物膜中空间分布的详细信息,以及什么样的化学条件会触发这种情况和相关的毒力行为。成功实现这些目标将通过提高对变形链球菌如何引起牙齿疾病的理解,推进人类口腔健康的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert A Burne其他文献
Robert A Burne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert A Burne', 18)}}的其他基金
Probiotics that moderate pH and antagonize pathogens to promote oral health
益生菌可调节 pH 值并对抗病原体,促进口腔健康
- 批准号:
10175495 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Probiotics that moderate pH and antagonize pathogens to promote oral health
益生菌可调节 pH 值并对抗病原体,促进口腔健康
- 批准号:
9234521 - 财政年份:2016
- 资助金额:
$ 37.5万 - 项目类别:
Environmental regulation of gene expression dissected by microfluidics
微流体剖析基因表达的环境调控
- 批准号:
8630064 - 财政年份:2013
- 资助金额:
$ 37.5万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 37.5万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:














{{item.name}}会员




