The Role of the Transcallosal Pathway in Neuroplasticity Following Nerve Injury

经胼胝体通路在神经损伤后神经可塑性中的作用

基本信息

  • 批准号:
    8963913
  • 负责人:
  • 金额:
    $ 34.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Twenty million Americans suffer from peripheral nerve injury that leads to significant changes in cortical and subcortical neuronal activity. Evidence from human imaging studies suggests that the degree of post- injury plasticity and cortical remapping may be maladaptive and positively correlated to the levels of sensory dysfunctions and phantom limb pain. In an animal model of peripheral nerve injury we demonstrated that post-injury increases in functional magnetic resonance imaging (fMRI) responses reflect in fact, increases in inhibitory interneurons activity. Thus, we hypothesize that post-injury increase in inhibitory interneurons activity delays neurorehabilitation. However, the majority of current neurorehabilitation strategies focus on surgical nerve repair which neglect to address the dramatic changes occurring in the brain level. Indeed, studies show that patients continue to suffer from sensory dysfunctions despite nerve repair surgeries. We have recently demonstrated that limb injury in adult rats induces short- and long-term plasticity changes that affect S1 activity; an effect that can be readily mapped with non-invasive, ultra-high field, and high-resolution fMRI. The plasticity was manifested in changes in the excitability of cortical laye 5 inhibitory interneurons in the affected primary somatosensory cortex (S1), and was mediated via the transcallosal projections. We used optogenetics methods to modulate cortical activity in the injured rats and successfully restored the balance between excitation and inhibition. Therefore, post-injury neuronal changes leading to a shift in the excitation-inhibition balance have the potential to be reshaped with neuromodulation strategies. The goal of this proposal is to develop state-of-the-art neuromodulation strategies to augment recovery including transcranial magnetic stimulation (TMS) and a novel, minimally-invasive, neuronal-specific technology. Utilizing multimodal technical approaches we will determine how injury affects plasticity mechanisms in the molecular, cellular, network and behavioral levels, and whether the neuromodulation strategies employed here can minimize sensory dysfunctions associated with injury and facilitate rehabilitation. We anticipate that these strategies could be translated into he clinical setting as alternatives or adjuvants to traditional surgical nerve repairs, and also be usd to modulate neuronal function in other neurological disorders.
 描述(由申请人提供):两千万美国人患有周围神经损伤,导致皮质和皮质下神经元活动发生显着变化。来自人类影像学研究的证据表明,损伤后可塑性和皮质重新映射的程度可能是适应不良的,并且与感觉功能障碍和幻肢痛的水平呈正相关。在周围神经损伤的动物模型中,我们证明,损伤后功能性磁共振成像(fMRI)反应的增加实际上反映了抑制性中间神经元活动的增加。因此,我们假设 损伤后抑制性中间神经元活动的增加会延迟神经康复。然而,目前大多数神经康复策略都集中在外科神经修复上,而忽视了大脑水平发生的巨大变化。事实上,研究表明,尽管进行了神经修复手术,患者仍然患有感觉功能障碍。我们最近证明,成年大鼠的肢体损伤会引起影响 S1 活性的短期和长期可塑性变化;这种效应可以通过非侵入性、超高场和高分辨率功能磁共振成像轻松绘制。可塑性表现为受影响的初级体感皮层 (S1) 中皮质第 5 层抑制性中间神经元的兴奋性变化,并通过胼胝体投射介导。我们利用光遗传学方法来调节受伤大鼠的皮质活动,并成功恢复了兴奋和抑制之间的平衡。因此,导致兴奋-抑制平衡转变的损伤后神经元变化有可能通过神经调节策略进行重塑。该提案的目标是开发最先进的神经调节策略来促进康复,包括经颅磁刺激 (TMS) 和一种新颖的微创神经元特异性技术。利用多模式技术方法,我们将确定损伤如何影响分子、细胞、网络和行为水平的可塑性机制,以及这里采用的神经调节策略是否可以最大限度地减少与损伤相关的感觉功能障碍并促进康复。我们预计这些策略可以转化为临床环境,作为传统外科神经修复的替代品或辅助剂,也可用于调节其他神经系统疾病的神经元功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Galit Pelled其他文献

Galit Pelled的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Galit Pelled', 18)}}的其他基金

The Role of the Transcallosal Pathway in Neuroplasticity Following Nerve Injury
经胼胝体通路在神经损伤后神经可塑性中的作用
  • 批准号:
    9547079
  • 财政年份:
    2017
  • 资助金额:
    $ 34.77万
  • 项目类别:
The Role of the Transcallosal Pathway in Neuroplasticity Following Nerve Injury
经胼胝体通路在神经损伤后神经可塑性中的作用
  • 批准号:
    8703550
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:
The Role of the Transcallosal Pathway in Neuroplasticity Following Nerve Injury
经胼胝体通路在神经损伤后神经可塑性中的作用
  • 批准号:
    8507285
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:
The Role of the Transcallosal Pathway in Neuroplasticity Following Nerve Injury
经胼胝体通路在神经损伤后神经可塑性中的作用
  • 批准号:
    8487537
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:
The Role of the Transcallosal Pathway in Neuroplasticity Following Nerve Injury
经胼胝体通路在神经损伤后神经可塑性中的作用
  • 批准号:
    8143381
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:
The Role of the Transcallosal Pathway in Neuroplasticity Following Nerve Injury
经胼胝体通路在神经损伤后神经可塑性中的作用
  • 批准号:
    8282858
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:
The Role of the Transcallosal Pathway in Neuroplasticity Following Nerve Injury
经胼胝体通路在神经损伤后神经可塑性中的作用
  • 批准号:
    8023948
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了