Biomechanical Response of Platelets to Superhydrophobic Surface in Mechanical Heart Valves and Other Blood-Contacting Medical Devices
机械心脏瓣膜和其他血液接触医疗器械中血小板对超疏水表面的生物力学反应
基本信息
- 批准号:8984225
- 负责人:
- 金额:$ 2.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-10 至 2016-02-15
- 项目状态:已结题
- 来源:
- 关键词:AddressAgonistAirAnticoagulant therapyAnticoagulantsAnticoagulationAntiplatelet DrugsArtificial HeartBiologyBiomechanicsBiomedical EngineeringBloodBlood CellsBlood PlateletsBlood coagulationCardiac Surgery proceduresCardiovascular DiseasesCardiovascular systemCause of DeathCell AdhesionCessation of lifeChemicalsChemistryClinicalComplexConsultationsDeveloped CountriesDeveloping CountriesDevice DesignsDevicesEnvironmentEvaluationExhibitsFellowshipFutureGenus - LotusGoalsGrantGrowthHeart Valve ProsthesisHeart ValvesHemorrhageImaging TechniquesInterventionInvestigationIschemiaLeadLearningLength of StayLiquid substanceMechanicsMedical DeviceMedicineMentorsMicrofluidic MicrochipsMicrofluidicsNatureOrganOutcomeParentsPatientsPatternPharmaceutical PreparationsPlant LeavesPlasma ProteinsPlatelet ActivationPlatelet aggregationPopulationPositioning AttributeProcessPropertyProsthesisProteinsQuality of lifeRegimenResearchResearch PersonnelRiskRoleScientistSeriesSocietiesStentsStructureSurfaceSystemTechniquesTestingTextureTherapeuticTherapeutic EmbolizationThrombosisThrombusTouch sensationWaterWorkconstrictiondesignfunctional grouphemodynamicshuman tissueimprovedinnovationmultidisciplinarynovelpreventprogramspublic health relevanceresponseshear stressskillstool
项目摘要
DESCRIPTION (provided by applicant): As the leading cause of death in industrialized nations and as an increasing problem in developing countries, the treatment for cardiovascular disease can impact a very large population. Interventions common to cardiovascular disease involve blood-contacting medical devices that are at-risk for thrombosis (blood clots). Since thrombosis on these devices can lead to ischemia in vital organs and possible death, it is critical
to mitigate the risk. Therefore, patients are commonly placed on antiplatelet and anticoagulant drug regimens. Unfortunately, these therapies can create additional bleeding risks and do not completely prevent the risk for thrombosis. Therefore, many material scientists have been investigating alternative non-thrombogenic materials to those currently used in order to minimize the need for drug therapeutics. Superhydrophobic surfaces are one of the surface treatments that has exhibited excellent results in static conditions at mitigating processes involved in thrombus growth. However, the response of blood to superhydrophobic materials remains ill-defined in a flow environment more relevant to cardiovascular devices. This environment consists of spatially changing shear, which has been shown to have a very large impact on platelet aggregation. Therefore the ultimate goal of the proposed work is to assess superhydrophobic materials in this environment to determine if these materials should be investigated further for devices such as prosthetic heart valves or stents. For this investigation we have 2 aims: Specific Aim 1) Prepare and characterize superhydrophobic surfaces in microfluidic channels involving large changes in shear rate. A series of surface treatments of varying texture and surface energy will be characterized by evaluating contact angles, surface structure, and flow over the surfaces. These treatments will be applied to microfluidic channels involving flow constrictions to assess material durability in a shear environment and to determine if air pockets exist along the superhydrophobic surface, which is common to surfaces with texture and low surface energy. Specific Aim 2) Analyze the impact of spatially varying hemodynamic shear forces on blood cell dynamics and the role for chemical activators using a novel Lab-on-Chip approach. We will be testing the ability for superhydrophobic surfaces to prevent platelet aggregation in a shear gradient. To test this, a series of microfluidic devices wil be developed for high throughput evaluation of material thrombogencity in a flow environment pertinent to medical devices. These tools will be combined with imaging techniques to evaluate different shear environments to guide future cardiovascular device designs and to determine the role for soluble agonist platelet activation in the aggregation process for superhydrophobic surfaces.
描述(由申请人提供):作为工业化国家的主要死亡原因和发展中国家日益严重的问题,心血管疾病的治疗可能影响非常大的人群。心血管疾病常见的干预措施涉及有血栓形成(血凝块)风险的血液接触医疗器械。由于这些设备上的血栓形成可能导致重要器官缺血并可能导致死亡,因此至关重要。
来降低风险因此,患者通常接受抗血小板和抗凝药物治疗。不幸的是,这些疗法可能会产生额外的出血风险,并且不能完全预防血栓形成的风险。因此,许多材料科学家一直在研究替代目前使用的非血栓形成材料,以尽量减少对药物治疗的需求。超疏水表面是在静态条件下在减轻血栓生长过程中表现出优异结果的表面处理之一。然而,在与心血管设备更相关的流动环境中,血液对超疏水材料的反应仍然不明确。这种环境包括空间变化的剪切,这已被证明对血小板聚集有很大的影响。因此,拟议工作的最终目标是评估这种环境中的超疏水材料,以确定是否应进一步研究这些材料用于人工心脏瓣膜或支架等器械。对于这项研究,我们有2个目标:具体目标1)制备和表征微流体通道中的超疏水表面,涉及剪切速率的大变化。通过评估接触角、表面结构和表面流动,对不同纹理和表面能的一系列表面处理进行表征。这些处理将应用于涉及流动收缩的微流体通道,以评估材料在剪切环境中的耐久性,并确定是否沿沿着超疏水表面存在气穴,这对于具有纹理和低表面能的表面是常见的。具体目标2)使用新型芯片实验室方法分析空间变化的血液动力学剪切力对血细胞动力学的影响以及化学活化剂的作用。我们将测试超疏水表面在剪切梯度中防止血小板聚集的能力。为了测试这一点,将开发一系列微流体装置,用于在与医疗装置相关的流动环境中高通量评价材料的致血栓性。这些工具将与成像技术相结合,以评估不同的剪切环境,指导未来的心血管器械设计,并确定可溶性激动剂血小板活化在超疏水表面聚集过程中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Bark其他文献
David Bark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Bark', 18)}}的其他基金
Paper-based high shear hemostatic analytical device
纸基高剪切止血分析装置
- 批准号:
10649056 - 财政年份:2023
- 资助金额:
$ 2.36万 - 项目类别:
Impact of turbulence on blood in mechanical circulatory support
机械循环支持中湍流对血液的影响
- 批准号:
10634686 - 财政年份:2022
- 资助金额:
$ 2.36万 - 项目类别:
Biomechanical Response of Platelets to Superhydrophobic Surface in Mechanical Heart Valves and Other Blood-Contacting Medical Devices
机械心脏瓣膜和其他血液接触医疗器械中血小板对超疏水表面的生物力学反应
- 批准号:
9231050 - 财政年份:2015
- 资助金额:
$ 2.36万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 2.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 2.36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 2.36万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 2.36万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 2.36万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 2.36万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 2.36万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 2.36万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 2.36万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 2.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)