Improved Accuracy of NIRS-based Skeletal Muscle Oxygen Saturation Measurement through Model Creation and Advanced Signal Processing Techniques
通过模型创建和先进的信号处理技术提高基于 NIRS 的骨骼肌氧饱和度测量的准确性
基本信息
- 批准号:8879942
- 负责人:
- 金额:$ 14.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:BloodBlood CellsBlood TransfusionBlood VesselsBrainBrain Hypoxia-IschemiaCerebrumCharacteristicsChildhoodClinicalClinical ResearchCollaborationsConsultDetectionDevelopmentDevicesEffectivenessFinancial compensationForearmHandHealthHumanInfantLeadLegLegal patentLengthLifeLightLimb structureLipidsLower ExtremityMeasurementMeasuresMedicalModelingMonitorMuscleNear-Infrared SpectroscopyOpticsOrganOutcomeOxygen saturation measurementPatient CarePatientsPeripheral arterial diseasePersonsPhasePrincipal InvestigatorPropertyReadingReference ValuesResearch InfrastructureResearch PersonnelShockSiteSkeletal MuscleSkinSpottingsSurfaceTechniquesTechnologyTestingThigh structureTissue ModelTissuesTransfusionValidationVariantVascular DiseasesWorkbasecommercializationdesignexperiencehandheld mobile devicehuman tissueimprovedlight scatteringneonatepediatric patientssensorsignal processingtissue oxygenationuser-friendlyvalidation studies
项目摘要
DESCRIPTION (provided by applicant): Near infrared spectroscopy (NIRS) oximeters have the potential to measure tissue oxygenation in brain, muscle, and other organs to improve management of blood transfusion, shock, hypoxia-ischemia, and vascular disease. However, currently available NIRS tissue oximeters have either been calibrated primarily for cerebral oxygenation measurements or for other tissues at a limited depth, limiting accuracy or applicability to these clinical conditions. The aim of this proposal is to develop LED-based NIRS tissue oximetry sensors capable of measuring skeletal muscle oxygenation several centimeters deep to the surface. The sensor design will decrease inter-subject variability of the measurement and improve accuracy of the measurement. This depth of measurement will allow for application to monitor peripheral artery disease, shock detection, and blood cell transfusion. Key milestones include:
• Determine optical light characteristics of skeletal muscle tissue which impact accuracy of NIRS tissue oximetry through a vascular occlusion study
• Determine if an improved ex vivo blood-tissue model utilizing lipid mixing techniques can adequately represent blood tissue optical characteristics
• Determine effectiveness of dynamic path-length adjustment signal processing to reduce inter-subject variability and improve skeletal muscle tissue oximetry accuracy
Ex vivo models allow for known and controllable reference values, but fail to model the appropriate tissue scattering properties. Severed limb models have been tested, but also do not necessarily represent the scattering properties of living human tissue measured by NIRS. Human vascular occlusion models allow for appropriate light scattering properties to be assessed, but fail to have controlled or known reference saturations. A combined approach of an improved ex vivo model and a vascular occlusion study with advanced signal processing techniques will be incorporated, altering the ex vivo modeling to better represent optical characteristics of tissue. The end result will be a robust model of skeletal muscle tissue and a tissue oximetry sensor with improved accuracy for skeletal muscle measurement and reduced inter-subject variability. Phase II work will focus on expanding into lower limb occlusion studies and validation in peripheral arterial disease (PAD) patients to document characterization of the optical properties of skeletal muscle in the presence of plaque and possible light path adjustment techniques for correcting alterations in optics. Eventual commercialization includes a hand held portable device that will support spot check of muscle oxygenation in multiple clinical settings with possible extension to a wearable, mobile device.
描述(由申请人提供):近红外光谱(NIRS)血氧仪具有测量脑、肌肉和其他器官组织氧合的潜力,以改善输血、休克、缺氧缺血和血管疾病的管理。然而,目前可用的近红外组织血氧仪要么主要用于脑氧合测量,要么用于有限深度的其他组织,限制了这些临床条件的准确性或适用性。该提案的目的是开发基于led的近红外组织血氧测量传感器,能够测量几厘米深的骨骼肌氧合。传感器的设计将减少测量的主体间变异性,提高测量的精度。这种测量深度将允许应用于外周动脉疾病监测、休克检测和血细胞输注。关键里程碑包括:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Franz Ulrich其他文献
Franz Ulrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Designing and fabricating artificial blood cells for global shortages
设计和制造人造血细胞应对全球短缺
- 批准号:
DE240100236 - 财政年份:2024
- 资助金额:
$ 14.75万 - 项目类别:
Discovery Early Career Researcher Award
The Use of Blood Cells and Optical Cerebral Complex IV Redox States in a Porcine Model of CO Poisoning with Evaluation of Mitochondrial Therapy
血细胞和光脑复合物 IV 氧化还原态在猪 CO 中毒模型中的应用及线粒体治疗的评价
- 批准号:
10734741 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Elucidation of white blood cells propulsion mechanism under a cytokine concentration gradient assuming concentration Marangoni effect.
假设浓度马兰戈尼效应,阐明细胞因子浓度梯度下白细胞的推进机制。
- 批准号:
23KJ1753 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mechanisms of oxygen off-loading from red blood cells in murine models of human disease
人类疾病小鼠模型中红细胞的氧卸载机制
- 批准号:
10343967 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Study of somatic mutations in normal blood cells using whole-genome sequencing
使用全基因组测序研究正常血细胞的体细胞突变
- 批准号:
22K20840 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
EAGER: Compact Field Portable Biophotonics Instrument for Real-Time Automated Analysis and Identification of Blood Cells Impact Impacted by COVID-19
EAGER:紧凑型现场便携式生物光子学仪器,用于实时自动分析和识别受 COVID-19 影响的血细胞
- 批准号:
2141473 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
Bioenergetics of red blood cells regulated by hydrogen sulfide
硫化氢调节红细胞的生物能
- 批准号:
RGPIN-2017-04392 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Discovery Grants Program - Individual
Mechanisms of oxygen off-loading from red blood cells in murine models of human disease
人类疾病小鼠模型中红细胞的氧卸载机制
- 批准号:
10548180 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Mechanical Characterization of Human Red Blood Cells
人红细胞的机械特性
- 批准号:
562095-2021 - 财政年份:2021
- 资助金额:
$ 14.75万 - 项目类别:
University Undergraduate Student Research Awards
Bioenergetics of red blood cells regulated by hydrogen sulfide
硫化氢调节红细胞的生物能
- 批准号:
RGPIN-2017-04392 - 财政年份:2021
- 资助金额:
$ 14.75万 - 项目类别:
Discovery Grants Program - Individual