Generation and Preservation of Novel Mouse Models

新型小鼠模型的生成和保存

基本信息

  • 批准号:
    8900946
  • 负责人:
  • 金额:
    $ 33.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-17 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

To define the functions of genes and cell types in vivo, there is no substitute for the power of modifying the mouse germline to generate gene knockouts (KO) and mutants or to express new genes transgenically. For optimal interpretation, genes need to inactivated conditionally or only in certain tissues, or expressed as transgenes in a tissue specific manner in the native genomic context. Using these techniques, investigators worldwide and particularly at Yale, have already been making numerous KO, knockin, transgenic, etc. mouse strains and breeding the modified alleles onto useful genetic backgrounds. These strains, many of which are published, are invaluable resources for research in Rheumatologic diseases, but the maintenance of them is time consuming and expensive, and one cannot envision the endless collection of more and more strains of actively breeding mice. Moreover, infection and breeding problems threaten the existence of many strains, and make the transfer among investigators cumbersome and costly. At the same time, to date the vast majority of engineered mutations have been made by a relatively small number of investigators; these technologies need to be more widely available so that labs that focus on particular genes or processes can have direct access to modifying them, instead of relying on labs that specialize in making KO mice. An important barrier to the technology is that the process is expensive, difficult to master, fraught with potential pitfalls, and time-consuming. In addition, it is limited to targeting ES cells of 129/Sv or (with more difficulty) B6; autoimmune prone strains cannot be directly modified. To address these issues, Core B will undertake 3 Aims. First, to make gene targeting accessible to YRDRCC members, the Core will provide introduce the novel TALEN endonuclease approach to genetic modification of the mouse germline. It allows the targeting of any gene directly in fertilized eggs, without the need for complex constructs (a simple PCR fragment is used), without the need for unwanted selectable markers, and without any ES cell work. TALEN technology can be applied to any strain, allowing us to directly modify autoimmune-prone animals. Most importantly, it is much faster, simpler, and cheaper, which will allow many more investigators to use the approach. Second, the Core will provide cryopreservation capabilities for the cost-effective storage of genetically modified mice. In our first funding cycle we froze sperm from over 380 strains. However, we did not preserve embryos from strains with multiple modified traits, leaving many very valuable lines unpreserved. We now plan to freeze these strains as embryos. Additionally, the core will continue cryopreservation of sperm, which is still required by many investigators. This will produce substantial decreases in costs associated with preservation of mouse strains. Finally, the Core will promulgate a web database of our 380 (and growing strains), facilitate their distribution to others, and in addition begin to freeze sperm of key strains from non- Yale investigators. This Core is thus both innovative and of high impact within and outside of Yale.
要确定基因和细胞类型在体内的功能,没有什么可以替代修改小鼠生殖系以产生基因敲除(KO)和突变或通过转基因表达新基因的能力。为了获得最佳解释,基因需要有条件地或仅在某些组织中失活,或者在天然基因组环境中以组织特有的方式表达为转基因。利用这些技术,世界各地的研究人员,特别是耶鲁大学的研究人员,已经制作了大量的KO、KNOTKIN、转基因等小鼠品系,并将修改后的等位基因培育到有用的遗传背景上。这些品系,其中许多已经发表,是风湿病研究的宝贵资源,但它们的维护既耗时又昂贵,人们无法想象越来越多活跃繁殖的品系的无穷无尽的收集。此外,感染和繁殖问题威胁到许多菌株的存在,并使研究人员之间的转移变得繁琐和昂贵。与此同时,到目前为止,绝大多数工程突变是由相对较少的研究人员制造的;这些技术需要更广泛地获得,以便专注于特定基因或过程的实验室可以直接修改它们,而不是依赖专门制造KO小鼠的实验室。这项技术的一个重要障碍是,这个过程昂贵,难以掌握,充满了潜在的陷阱,而且很耗时。此外,它仅限于靶向129/Sv或(更困难的)B6的ES细胞;自身免疫倾向株不能直接修饰。为了解决这些问题,核心B将实现三个目标。首先,为了使YRDRCC成员能够获得基因打靶,核心将提供引入新的TALEN内切酶方法来对小鼠生殖系进行遗传修饰。它允许直接在受精卵中靶向任何基因,而不需要复杂的结构(使用简单的PCR片段),不需要不需要的可选择标记,也不需要任何ES细胞工作。Talen技术可以应用于任何菌株,允许我们直接修改易产生自身免疫的动物。最重要的是,它更快、更简单、更便宜,这将允许更多的调查人员使用这种方法。其次,Core将为具有成本效益的转基因小鼠提供冷冻保存能力。在我们的第一个资助周期中,我们冷冻了380多个品系的精子。然而,我们没有保存具有多个修改性状的菌株的胚胎,留下了许多非常有价值的品系没有保存下来。我们现在计划将这些菌株冷冻为胚胎。此外,核心将继续冷冻保存精子,这仍然是许多研究人员的要求。这将大大降低与保存小鼠品系相关的成本。最后,中心将公布我们380个(和正在生长的菌株)的网络数据库,促进它们分发给其他人,此外,还将开始冷冻来自非耶鲁大学研究人员的关键菌株的精子。因此,这一核心既具有创新性,又在耶鲁大学内外具有很高的影响力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK J SHLOMCHIK其他文献

MARK J SHLOMCHIK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK J SHLOMCHIK', 18)}}的其他基金

Investigating How TLR7 Activates and TLR9 Regulates Systemic Autoimmunity
研究 TLR7 如何激活和 TLR9 如何调节系统性自身免疫
  • 批准号:
    10598477
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
Investigating How TLR7 Activates and TLR9 Regulates Systemic Autoimmunity
研究 TLR7 如何激活和 TLR9 如何调节系统性自身免疫
  • 批准号:
    10049283
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
Investigating How TLR7 Activates and TLR9 Regulates Systemic Autoimmunity
研究 TLR7 如何激活和 TLR9 如何调节系统性自身免疫
  • 批准号:
    10327268
  • 财政年份:
    2021
  • 资助金额:
    $ 33.79万
  • 项目类别:
Exploring the Role of Long Noncoding RNAs in Germinal Center B cells
探索长非编码 RNA 在生发中心 B 细胞中的作用
  • 批准号:
    10154493
  • 财政年份:
    2020
  • 资助金额:
    $ 33.79万
  • 项目类别:
Exploring the Role of Long Noncoding RNAs in Germinal Center B cells
探索长非编码 RNA 在生发中心 B 细胞中的作用
  • 批准号:
    10308111
  • 财政年份:
    2020
  • 资助金额:
    $ 33.79万
  • 项目类别:
Investigating the Repertoires and Functions of T Cells that Help Autoreactive B Cells in Lupus
研究帮助狼疮中自身反应性 B 细胞的 T 细胞的组成和功能
  • 批准号:
    10058242
  • 财政年份:
    2017
  • 资助金额:
    $ 33.79万
  • 项目类别:
Investigating the Repertoires and Functions of T Cells that Help Autoreactive B Cells in Lupus
研究帮助狼疮中自身反应性 B 细胞的 T 细胞的组成和功能
  • 批准号:
    10308077
  • 财政年份:
    2017
  • 资助金额:
    $ 33.79万
  • 项目类别:
Investigating How TLR7 Activates and TLR9 Regulates Systemic Autoimmunity
研究 TLR7 如何激活和 TLR9 如何调节系统性自身免疫
  • 批准号:
    9175268
  • 财政年份:
    2016
  • 资助金额:
    $ 33.79万
  • 项目类别:
Investigating How TLR7 Activates and TLR9 Regulates Systemic Autoimmunity
研究 TLR7 如何激活和 TLR9 如何调节系统性自身免疫
  • 批准号:
    9273442
  • 财政年份:
    2016
  • 资助金额:
    $ 33.79万
  • 项目类别:
Investigating How TLR7 Activates and TLR9 Regulates Systemic Autoimmunity
研究 TLR7 如何激活和 TLR9 如何调节系统性自身免疫
  • 批准号:
    9917691
  • 财政年份:
    2016
  • 资助金额:
    $ 33.79万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 33.79万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 33.79万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 33.79万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 33.79万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 33.79万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 33.79万
  • 项目类别:
    Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 33.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 33.79万
  • 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 33.79万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 33.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了