Bayesian models to accelerate antibacterial drug discovery
贝叶斯模型加速抗菌药物的发现
基本信息
- 批准号:8841308
- 负责人:
- 金额:$ 38.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Accelerated PhaseAddressAnimal ModelAnti-Bacterial AgentsAntimalarialsBacteriaBacterial InfectionsBayesian MethodBayesian ModelingBiological AssayBiological FactorsCellsChemical StructureChemicalsCollectionCommunicable DiseasesComputational TechniqueComputational algorithmComputer softwareDataData SetDisincentiveDrug IndustryDrug resistanceDrug-sensitiveEvolutionFailureFutureGoalsGrowthIn VitroInfectionInnovative TherapyLactamsLeadLearningLibrariesLiteratureMachine LearningMedicalMethodologyMethodsMicrobeModelingMycobacterium tuberculosisPharmaceutical ChemistryPharmaceutical PreparationsPublishingQuinolonesRecording of previous eventsResearchResistanceSafetyStatistical ModelsTechniquesTechnologyTestingTherapeuticTimeValidationWagesbasecost effectivecytotoxicitydrug discoveryglobal healthheuristicshigh throughput screeninginhibitor/antagonistmeetingsnext generationnovelnovel strategiesnovel therapeuticsoutcome forecastpathogenpatient populationpre-clinicalpredictive modelingprocess optimizationprospectiveresistance mechanismscaffoldscreeningsmall moleculesuccess
项目摘要
Infections caused by a range of bacteria represent a significant medical need that is not being sufficiently addressed by the pharmaceutical industry. M. tuberculosis, the ESKAPE bacteria, and Select Agent bacteria constitute three classes of microbes that are relevant to global health in large part because of their resistance to available therapeutics. Most new antibacterials are developed by classical discovery methodologies, such as randomly assaying small molecule collections for growth inhibition ofthe appropriate bacterium. We have chosen to look at antibacterial drug discovery differently and sought a novel strategy utilizing Bayesian models to discover and optimize small molecule antibacterials that is more efficient. For example, we viewed the M. tuberculosis data generated from these random "screens" as a computational learning opportunity. We have used computational algorithms to analyze what attributes ofthe molecules tested are consistent with activity and inactivity. Significantly, this approach yielded validated models for M. tuberculosis that have predicted actives with comparatively high rates of success. Thus, we propose two important extensions of this technology: 1) the optimization ofthe three most promising antitubercular actives arising from our models and 2) the creation and validation of this Bayesian methodology to uncover novel actives against each ofthe ESKAPE and Select Agent bacteria, which will be subsequently optimized. These optimization processes will afford molecules with significant potential as novel therapeutics.
由一系列细菌引起的感染是一项重大的医疗需求,而制药业尚未充分解决这一问题。结核分枝杆菌、ESKAPE细菌和选择剂细菌构成了与全球健康相关的三类微生物,这在很大程度上是因为它们对现有治疗方法具有耐药性。大多数新的抗菌剂是通过经典的发现方法开发的,例如随机分析小分子集合以抑制适当细菌的生长。我们选择以不同的方式看待抗菌药物的发现,并寻求一种利用贝叶斯模型来发现和优化更有效的小分子抗菌药物的新策略。例如,我们将这些随机“筛选”产生的结核分枝杆菌数据视为计算学习的机会。我们使用计算算法来分析被测分子的哪些属性与活性和非活性相一致。值得注意的是,这种方法产生了有效的结核分枝杆菌模型,预测活性的成功率相对较高。因此,我们提出了这项技术的两个重要扩展:1)优化从我们的模型中产生的三种最有希望的抗结核活性;2)创建和验证这种贝叶斯方法,以发现针对ESKAPE和Select Agent细菌的新活性,这些活性随后将被优化。这些优化过程将提供具有重要潜力的分子作为新型治疗药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Stephen Freundlich其他文献
Joel Stephen Freundlich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Stephen Freundlich', 18)}}的其他基金
A Preclinical Program for Targeting Mycobacterium tuberculosis KasA
针对结核分枝杆菌 KasA 的临床前计划
- 批准号:
10466840 - 财政年份:2021
- 资助金额:
$ 38.39万 - 项目类别:
A Preclinical Program for Targeting Mycobacterium tuberculosis KasA
针对结核分枝杆菌 KasA 的临床前计划
- 批准号:
10209330 - 财政年份:2021
- 资助金额:
$ 38.39万 - 项目类别:
A Preclinical Program for Targeting Mycobacterium tuberculosis KasA
针对结核分枝杆菌 KasA 的临床前计划
- 批准号:
10681371 - 财政年份:2021
- 资助金额:
$ 38.39万 - 项目类别:
Bayesian models to accelerate antibacterial drug discovery
贝叶斯模型加速抗菌药物的发现
- 批准号:
9243961 - 财政年份:
- 资助金额:
$ 38.39万 - 项目类别:
Bayesian models to accelerate antibacterial drug discovery
贝叶斯模型加速抗菌药物的发现
- 批准号:
9020195 - 财政年份:
- 资助金额:
$ 38.39万 - 项目类别:
Bayesian models to accelerate antibacterial drug discovery
贝叶斯模型加速抗菌药物的发现
- 批准号:
8655931 - 财政年份:
- 资助金额:
$ 38.39万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.39万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.39万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.39万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.39万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.39万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.39万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.39万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.39万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.39万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.39万 - 项目类别:
Research Grant