4D Shape Analysis for Modeling Spatiotemporal Change Trajectories in Huntington's
用于亨廷顿舞蹈症时空变化轨迹建模的 4D 形状分析
基本信息
- 批准号:8742009
- 负责人:
- 金额:$ 41.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-30 至 2016-09-29
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomic ModelsAncillary StudyAtrophicBehaviorBiologicalBiological MarkersBiometryBrainCalibrationClinicalCognitiveCollaborationsCommunitiesComplexComputer AnalysisComputer softwareComputing MethodologiesDataData AnalysesData SetDatabasesDevelopmentDiagnosisDiseaseDisease ProgressionEnsureEnvironmentEvolutionFunctional disorderGenerationsGeneric DrugsGeneticGrowthHereditary DiseaseHippocampus (Brain)Huntington DiseaseImageImage AnalysisImageryImpaired cognitionImpairmentIndividualInheritedIowaJointsLeadLongitudinal StudiesMagnetic Resonance ImagingMeasurementMeasuresMethodologyMethodsModelingMovementNatureNerve DegenerationNeurobiologyNeurodegenerative DisordersNorth AmericaOnset of illnessPathologyPatientsPharmacotherapyPhasePhenotypeProceduresProcessResearchResearch PersonnelResourcesRiskSamplingShapesSiteStagingStatistical ModelsStructureSurfaceSymptomsTechniquesTestingThalamic structureTimeTrainingTravelUtahValidationWorkbasecerebral atrophycognitive changecomputational anatomycomputer frameworkcomputerized toolscomputing resourcesdesignimprovedinnovationinsightinterestlongitudinal analysislongitudinal databaselongitudinal designmorphometryneuroimagingnovelpre-clinicalpreventprototypepublic health relevanceputamenshape analysisspatiotemporalstatisticstool
项目摘要
DESCRIPTION (provided by applicant): Huntington's Disease (HD) is an inherited, neurodegenerative disorder. Major research findings describe the progressive nature of neurodegeneration and subtle changes very early during the preclinical phase, e.g. atrophy of the neurostriatum and other subcortical structures and observation of movement abnormalities up to 15 years before clinical symptoms are diagnosed. The need for improved understanding of the time-course of underlying neurobiological and cognitive changes during the prodromal stage, which is essential for the development of new therapies, motivated the longitudinal design of the multi-center PREDICT-HD study. Subjects at risk for HD are imaged and examined repeatedly to study patient-specific trajectories of brain structures and associated cognitive changes. Given the consortium's large database of longitudinal imaging data, there is a clear need to develop sensitive measures describing and characterizing the timing and nature of such changes. This proposal for an Ancillary Study in PREDICT-HD will provide newly developed computational anatomy tools specifically designed for the analysis of anatomical structures in longitudinal image data and for the statistical modeling of spatio-temporal trajectories of morphometric brain measurements. We will provide novel tools for spatio-temporal (4D) analysis of longitudinal neuroimage data, via a shareable computational environment with the PREDICT-HD consortium. The proposed methods are particularly innovative in various analytical and computational aspects: (1) Overcoming limitations of longitudinal studies with its inherent challenges of multiple non-uniformly spaced time points and missing data via continuous modeling; (2) Presenting efficient and robust 4D shape modeling without the need to compute corresponding landmarks across shape-groups; (3) Applying a mathematical concept that mimics biological growth to guarantee smooth 4D shape trajectories, and (4) The joint analysis of multi-object complexes where structures of interest are embedded in their anatomical context. This new resource will significantly enhance image-analysis capabilities of the PREDICT-HD consortium, as the tools will provide a modeling of the time course of pathophysiological processes affecting single or multi-object subcortical structures, offering researchers new insight into the time-course and progression of pathology. This project will provide optimal collaboration between MRI segmentation work at Iowa, our novel 4D shape modeling methodology as well as the expertise on statistical shape analysis and spatiotemporal shape modeling at Utah, combined with biostatistical excellence in longitudinal data analysis of the PREDICT-HD consortium at Iowa. This synergy includes both groups' strong expertise in providing shareable computational resources and training materials. Beyond providing tools, our collaborative efforts will process and analyze the large PREDICT-HD data- base, with up to 351 multi-time point MRI datasets. This will potentially lead to new biomarkers that are crucial to the
development of new therapies to prevent onset or slow the progression of symptoms. This resource also serves the general scientific community since it is generic w.r.t. the application domain and freely distributed via NITRC.
描述(由申请人提供):亨廷顿病(HD)是一种遗传性神经退行性疾病。主要研究结果描述了神经退行性变的渐进性质和临床前阶段早期的微妙变化,例如在诊断出临床症状之前长达 15 年的神经纹状体和其他皮层下结构萎缩以及观察运动异常。需要更好地了解前驱阶段潜在神经生物学和认知变化的时间过程,这对于新疗法的开发至关重要,这推动了多中心 PREDICT-HD 研究的纵向设计。对有HD风险的受试者进行反复成像和检查,以研究患者特定的大脑结构轨迹和相关的认知变化。鉴于该联盟拥有庞大的纵向成像数据数据库,显然需要制定敏感措施来描述和表征此类变化的时间和性质。 PREDICT-HD 辅助研究的这项提案将提供新开发的计算解剖学工具,专门用于分析纵向图像数据中的解剖结构以及脑形态测量的时空轨迹的统计建模。我们将通过与 PREDICT-HD 联盟共享的计算环境,为纵向神经图像数据的时空 (4D) 分析提供新颖的工具。所提出的方法在各个分析和计算方面尤其具有创新性:(1)通过连续建模克服了纵向研究的局限性,即多个非均匀间隔时间点和缺失数据的固有挑战; (2) 提出高效且鲁棒的 4D 形状建模,无需计算跨形状组的相应地标; (3) 应用模拟生物生长的数学概念来保证平滑的 4D 形状轨迹,以及 (4) 对多对象复合体进行联合分析,其中感兴趣的结构嵌入其解剖背景中。 这一新资源将显着增强 PREDICT-HD 联盟的图像分析能力,因为这些工具将提供影响单个或多对象皮层下结构的病理生理过程的时间过程的建模,为研究人员提供对病理学时间过程和进展的新见解。该项目将在爱荷华州的 MRI 分割工作、我们新颖的 4D 形状建模方法以及犹他州统计形状分析和时空形状建模方面的专业知识以及爱荷华州 PREDICT-HD 联盟纵向数据分析方面的生物统计学卓越能力之间提供最佳协作。这种协同作用包括两个小组在提供可共享计算资源和培训材料方面的强大专业知识。除了提供工具之外,我们的合作还将处理和分析大型 PREDICT-HD 数据库,其中包含多达 351 个多时间点 MRI 数据集。这可能会导致新的生物标记物对
开发新疗法来预防症状的发生或减缓症状的进展。该资源也为一般科学界服务,因为它是通用的。应用程序域并通过 NITRC 免费分发。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GUIDO GERIG其他文献
GUIDO GERIG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GUIDO GERIG', 18)}}的其他基金
4D Shape Analysis for Modeling Spatiotemporal Change Trajectories in Huntington's
用于亨廷顿舞蹈症时空变化轨迹建模的 4D 形状分析
- 批准号:
8462842 - 财政年份:2012
- 资助金额:
$ 41.35万 - 项目类别:
4D Shape Analysis for Modeling Spatiotemporal Change Trajectories in Huntington's
用于亨廷顿舞蹈症时空变化轨迹建模的 4D 形状分析
- 批准号:
8551816 - 财政年份:2012
- 资助金额:
$ 41.35万 - 项目类别:
Down syndrome: Bridging Genes, Brain and Cognition
唐氏综合症:连接基因、大脑和认知
- 批准号:
8189296 - 财政年份:2011
- 资助金额:
$ 41.35万 - 项目类别:
Down syndrome: Bridging Genes, Brain and Cognition
唐氏综合症:连接基因、大脑和认知
- 批准号:
8313895 - 财政年份:2011
- 资助金额:
$ 41.35万 - 项目类别:
Down syndrome: Bridging Genes, Brain and Cognition
唐氏综合症:连接基因、大脑和认知
- 批准号:
8492122 - 财政年份:2011
- 资助金额:
$ 41.35万 - 项目类别:
Down syndrome: Bridging Genes, Brain and Cognition
唐氏综合症:连接基因、大脑和认知
- 批准号:
8700438 - 财政年份:2011
- 资助金额:
$ 41.35万 - 项目类别:
STRUCTURAL ANALYSIS OF ANATOMICAL SHAPES AND OF WHITE MATTER TRACTS
解剖形状和白质束的结构分析
- 批准号:
7669311 - 财政年份:2008
- 资助金额:
$ 41.35万 - 项目类别:
STRUCTURAL ANALYSIS OF ANATOMICAL SHAPES AND OF WHITE MATTER TRACTS
解剖形状和白质束的结构分析
- 批准号:
6988774 - 财政年份:2004
- 资助金额:
$ 41.35万 - 项目类别:














{{item.name}}会员




