Free-standing nanowire transistor bio-probes for intracellular and implanted recording
用于细胞内和植入记录的独立式纳米线晶体管生物探针
基本信息
- 批准号:8954762
- 负责人:
- 金额:$ 20.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressBiologicalBiomedical ResearchBiomimeticsBoxingCardiac MyocytesCell CommunicationCellsCharacteristicsCoupledCouplingDevelopmentDevicesDimensionsElectrodesElectronicsElectroporationEndocytosis PathwayEvaluationFaceGeometryGoalsImplantIn SituIn VitroInterdisciplinary StudyLifeMechanicsMethodsMicroscopicModificationMorphologic artifactsNanostructuresNeuronsOperative Surgical ProceduresPatient CarePerformancePhysiologicalProceduresProcessProductionPropertyProsthesisProtocols documentationReactionReproducibilityResearchResearch PersonnelSelf-Help DevicesShapesSignal TransductionStructureSurfaceTechniquesTestingTherapeuticTimeTissuesTransistorsTranslational Researchbasebiological researchbiomaterial compatibilitybrain machine interfacecell typecommercializationdesignextracellularflexibilityimplantable deviceimplantationimprovedin vivoinnovationminimally invasivenanoelectronicsnanoscalenanosensorsnanowirepublic health relevanceresearch studyscale upsensorthree dimensional structure
项目摘要
DESCRIPTION (provided by applicant): The bio-electronic interface is a key component in biological research and biomedical applications. Existing techniques face many intrinsic challenges due to the size and mechanical mismatch between recording electrodes and live cells, which leads to limitations in their performance, biocompatibility and lifetime, especially fr implanted applications. The fundamental question is: can we re-examine the basic unit of such interface to develop bio-probes from bottom-up, so that the artificial electronics and the biological network can be bridged in a more natural way? Nanowire-based field-effect transistor (FET) sensors have shown high sensitivity in detecting biological signals as well as rich interactions with live cells, owing to their nanoscale size and structure. This makes them very promising building blocks for constructing high-performance, minimally-invasive bio-probes for in vitro and in vivo applications. The overall goal of this proposed R21 project is to develop ultra-small free-standing nanowire transistor bio-probes for multiplexed intracellular study and implanted biomedical applications. In our on-going experiments, we discovered that a nanoscale field-effect transistor (nanoFET) can be synthetically integrated in a kinked Si nanowire (SiNW) to build a three-dimensional (3D) nano-sensor, which can non-invasively enter live cardiomyocytes to obtain full intracellular action potentials. We hypothesize that this method can be developed into a general platform for interfacing with different types of cells, and more importantly, for building implantable bio-probes with unique interplay with live cells, by incorporating biodegradable sacrificial layers that allow post-implantation in situ formation of flexible 3D structures to promote tighter interactions with active cells away from the more rigid supportive body. This overall hypothesis will be addressed in the experiments of the following Specific Aims: (1) to develop general protocols for promoting strong nanoFET-cell interaction and (2) to develop ultra-small free- standing nanoFET probes optimized for intracellular recording and implanted applications. The systematic study here would bring insightful understanding and control of the nanowire-cell interaction, and provide robust protocols for using nanowire-based probes for physiological study and biomedical applications. In addition, the unique design of free-standing probe with three-dimensional (3D) flexible structure formed in situ after implantation, which presents the nanoFET in 3D free space without bulky supporting substrates, could greatly enhance signal quality and reproducibility, and expand the functionality of the nanoelectronic sensors, due to the significantly reduced probe size and better mechanical matching with the tissue, leading to less tissue reaction, and more natural coupling with cells. Our study would find broad biomedical applications for assistive devices, prosthesis and brain-machine interface.
描述(由申请人提供):生物电子接口是生物研究和生物医学应用中的关键组件。 由于记录电极和活细胞之间的尺寸和机械失配,现有技术面临许多固有的挑战,这导致其性能、生物相容性和寿命的限制,特别是在植入应用中。 根本问题是:我们能否重新审视这种界面的基本单元,自下而上开发生物探针,使人工电子和生物网络能够以更自然的方式连接起来? 基于纳米线的场效应晶体管(FET)传感器由于其纳米尺寸和结构而在检测生物信号以及与活细胞的丰富相互作用方面显示出高灵敏度。 这使得它们非常有前途的构建块,用于构建高性能,微创的生物探针,在体外和体内的应用。 R21项目的总体目标是开发超小型独立纳米线晶体管生物探针,用于多路细胞内研究和植入生物医学应用。 在我们正在进行的实验中,我们发现纳米级场效应晶体管(nanoFET)可以合成集成在扭结硅纳米线(SiNW)中,以构建三维(3D)纳米传感器,该传感器可以非侵入性地进入活心肌细胞以获得完整的细胞内动作电位。 我们假设,这种方法可以发展成一个通用平台,用于与不同类型的细胞接口,更重要的是,用于构建与活细胞具有独特相互作用的可植入生物探针,通过结合可生物降解的牺牲层,允许植入后原位形成柔性3D结构,以促进与远离更刚性的支持体的活性细胞的更紧密的相互作用。 该总体假设将在以下特定目的的实验中解决:(1)开发用于促进强nanoFET-细胞相互作用的一般方案和(2)开发针对细胞内记录和植入应用优化的超小自立式nanoFET探针。 这里的系统研究将带来对细胞-细胞相互作用的深刻理解和控制,并为使用基于细胞的探针进行生理研究和生物医学应用提供稳健的协议。 此外,具有植入后原位形成的三维(3D)柔性结构的独立式探针的独特设计,其将纳米FET呈现在3D自由空间中而没有庞大的支撑衬底,可以大大提高信号质量和再现性,并扩展纳米电子传感器的功能,这是由于显著减小的探针尺寸和与组织更好的机械匹配,导致较少的组织反应和与细胞更自然的偶联。 我们的研究将为辅助设备,假肢和脑机接口找到广泛的生物医学应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quan Qing其他文献
Quan Qing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quan Qing', 18)}}的其他基金
Scalable Fabrication and Recognition Tunneling Sequencing Study of Gated Nanopore Self-embedded in Transverse Metal Nanojunctions
横向金属纳米结自嵌入门控纳米孔的可扩展制造和识别隧道测序研究
- 批准号:
9227427 - 财政年份:2017
- 资助金额:
$ 20.41万 - 项目类别:
Free-standing nanowire transistor bio-probes for intracellular and implanted recording
用于细胞内和植入记录的独立式纳米线晶体管生物探针
- 批准号:
9131745 - 财政年份:2015
- 资助金额:
$ 20.41万 - 项目类别:
相似海外基金
Systems modeling to address the social and biological drivers of disparities in infection and mortality from emerging infectious diseases
用于解决新发传染病感染和死亡率差异的社会和生物驱动因素的系统建模
- 批准号:
10669177 - 财政年份:2022
- 资助金额:
$ 20.41万 - 项目类别:
Systems modeling to address the social and biological drivers of disparities in infection and mortality from emerging infectious diseases
用于解决新发传染病感染和死亡率差异的社会和生物驱动因素的系统建模
- 批准号:
10415713 - 财政年份:2022
- 资助金额:
$ 20.41万 - 项目类别:
Transporting established insights from classical experimental design to address causal questions in environmental epidemiology including the understanding of biological mediating mechanisms
运用经典实验设计的既定见解来解决环境流行病学中的因果问题,包括对生物介导机制的理解
- 批准号:
10395286 - 财政年份:2021
- 资助金额:
$ 20.41万 - 项目类别:
Advancing cryo-EM technology to address difficult biological questions
推进冷冻电镜技术解决棘手的生物学问题
- 批准号:
10570241 - 财政年份:2021
- 资助金额:
$ 20.41万 - 项目类别:
Advancing cryo-EM technology to address difficult biological questions
推进冷冻电镜技术解决棘手的生物学问题
- 批准号:
10166355 - 财政年份:2021
- 资助金额:
$ 20.41万 - 项目类别:
Advancing cryo-EM technology to address difficult biological questions
推进冷冻电镜技术解决棘手的生物学问题
- 批准号:
10376252 - 财政年份:2021
- 资助金额:
$ 20.41万 - 项目类别:
Building Infrastructure to Address Social, Cultural and Biological Determinants of Diabetes in Lebanon
建设基础设施以解决黎巴嫩糖尿病的社会、文化和生物决定因素
- 批准号:
10237378 - 财政年份:2020
- 资助金额:
$ 20.41万 - 项目类别:
Reprogramming genetic information at the RNA level: optimizing tools to address specific biological questions
在 RNA 水平上重新编程遗传信息:优化工具来解决特定的生物学问题
- 批准号:
404867268 - 财政年份:2018
- 资助金额:
$ 20.41万 - 项目类别:
Priority Programmes
Biological soil crusts as unique microecosystem represent a suitable model system to address taxonomy and cryptic diversity of microalgal key players
生物土壤结皮作为独特的微生态系统,代表了解决微藻关键参与者的分类学和神秘多样性的合适模型系统
- 批准号:
350173788 - 财政年份:2017
- 资助金额:
$ 20.41万 - 项目类别:
Priority Programmes
Multidisciplinary translational research to address social disparities in osteoporosis: Understanding the social context of biological mechanisms
解决骨质疏松症社会差异的多学科转化研究:了解生物机制的社会背景
- 批准号:
nhmrc : 1107510 - 财政年份:2016
- 资助金额:
$ 20.41万 - 项目类别:
Career Development Fellowships