SpliceCore: A cloud-based platform to detect, quantify and interpret alternative splicing variation from next-generation sequencing data.

SpliceCore:一个基于云的平台,用于检测、量化和解释下一代测序数据中的选择性剪接变异。

基本信息

  • 批准号:
    8980250
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-06 至 2017-03-05
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): This Small Business Innovation Research (SBIR) Phase I project will yield the first prototype of SpliceCore, a cloud-based resource for the discovery, analysis and interpretation of Alternative Splicing (AS) from RNA-seq data. 15% of all known diseases are triggered by defects in AS, an mRNA maturation process that conveys functional diversity to genes. Defective AS is treatable by small molecules and RNA therapeutic compounds, some of which are currently in clinical trials. SpliceCore will discover new drug targets and biomarkers by extracting disease-relevant AS events from RNA-seq data. The SpliceCore suite combines three algorithms developed and validated at Cold Spring Harbor Laboratory (CSHL): SpliceTrap, for the detection of AS profiles; SpliceDuo, for the identification of significant AS variation; and SpliceImpact, for the prioritization of biologically relevant AS events with therapeutic potential. We are currently applying these algorithms at CSHL for the discovery of AS events causative of Breast Cancer and to study the role of AS in the mechanism of the Spinal Muscular Atrophy disease. The Transcriptomics market was valued at $1.7 billion in 2013 and it is expected to reach $3.7 billion by 2019 at a CAGR of 13.7% from 2014 to 2019. RNA-seq data is quickly accumulating in public repositories such as The Cancer Genome Atlas (TCGA), Geuvadis and the ENCODE project. It is expected that the number of pre-clinical studies involving AS profiling will increase as a result of the reduced costs of Next Generation Sequencing and the early success of RNA therapeutics. SpliceCore will reduce the cost, time and complexity associated with AS analysis. To deliver a commercial prototype, it is necessary to anticipate the demands of multiple users operating simultaneously in a cloud-based environment. Our objective for this project is to investigate cost-effective computing strategies that comply with user-tailored specifications. Therefore our aims are (1) to develop data processing methods and predictive heuristics that increase computing performance while reducing cloud expenditures; (2) to increase detection sensitivity by enabling the discovery of novel AS, and use this new capacity to generate a database for cancer-specific AS events; and (3) Improve SpliceImpact biological interpretation by developing human-computer interaction through object recognition and new quantitative metrics that capitalize on "omics" datasets. There is a great challenge in the market in making cost- effective, fast and robust data analysis with experimentally testable solutions which Envisagenics innovative technology could relief. Envisagenics has a tremendous opportunity due to the increased demand for AS analysis in the biomedical sector, reinforced by new high-throughput capabilities and promising clinical trials. This work is a close collaboration with one of the leading bioinformaticians in the AS field, Dr. Gunnar Rätsch Associate Member at Memorial Sloan-Kettering Institute for Cancer Research, expert in computational methods for the analysis of big biomedical data and the renown scientists Dr. Adrian Krainer, Professor at Cold Spring Harbor Laboratory, who has deciphered much of the AS mechanism and its implications to Cancer and other genetic disorders.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARTIN AKERMAN其他文献

MARTIN AKERMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARTIN AKERMAN', 18)}}的其他基金

Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
  • 批准号:
    10647773
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
  • 批准号:
    10482502
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
  • 批准号:
    10838973
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
A Software Platform for the Identification of Cell Surface Antigens Using RNA-seq Data
使用 RNA-seq 数据识别细胞表面抗原的软件平台
  • 批准号:
    9909639
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:

相似海外基金

Alternative splicing of Grin1 controls NMDA receptor function in physiological and disease processes
Grin1 的选择性剪接控制生理和疾病过程中的 NMDA 受体功能
  • 批准号:
    488788
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Operating Grants
RBFOX2 deregulation promotes pancreatic cancer progression through alternative splicing
RBFOX2 失调通过选择性剪接促进胰腺癌进展
  • 批准号:
    10638347
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Long Noncoding RNA H19 Mediating Alternative Splicing in ALD Pathogenesis
长非编码 RNA H19 介导 ALD 发病机制中的选择性剪接
  • 批准号:
    10717440
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
  • 批准号:
    10577186
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Alternative splicing regulation of CLTC in the heart
心脏中 CLTC 的选择性剪接调节
  • 批准号:
    10749474
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Nitric oxide as a novel regulator of alternative splicing
一氧化氮作为选择性剪接的新型调节剂
  • 批准号:
    10673458
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
Alternative splicing as an evolutionary driver of phenotypic plasticity
选择性剪接作为表型可塑性的进化驱动力
  • 批准号:
    2884151
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Studentship
Rescuing SYNGAP1 haploinsufficiency by redirecting alternative splicing
通过重定向选择性剪接挽救 SYNGAP1 单倍体不足
  • 批准号:
    10660668
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
CAREER: Mechanotransduction, transcription, and alternative splicing in cell biology
职业:细胞生物学中的机械转导、转录和选择性剪接
  • 批准号:
    2239056
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Investigating the role of alternative splicing in the islets of Langerhans in developing diabetes.
研究朗格汉斯岛中选择性剪接在糖尿病发生中的作用。
  • 批准号:
    468851650
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了