A Software Platform for the Identification of Cell Surface Antigens Using RNA-seq Data
使用 RNA-seq 数据识别细胞表面抗原的软件平台
基本信息
- 批准号:9909639
- 负责人:
- 金额:$ 30.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-12 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAdult Acute Myeloblastic LeukemiaAlternative SplicingAntibodiesAspirate substanceAutoimmunityAutomobile DrivingBindingBone MarrowCell LineCell surfaceCessation of lifeChildhoodChildhood Acute Myeloid LeukemiaChronicCollaborationsComputer SimulationComputer softwareConsumptionDataDatabasesDevelopmentDiagnosisDiseaseDrug TargetingEpitopesEventFDA approvedGrantHigh-Throughput Nucleotide SequencingImmune responseImmunologicsImmunooncologyImmunotherapyIn VitroInfectionInflammationInflammatoryKnowledgeLeadLeukemic CellLymphocyteMachine LearningMalignant NeoplasmsMemorial Sloan-Kettering Cancer CenterMethodsModalityMonoclonal AntibodiesMorbidity - disease rateMutationNonsense-Mediated DecayPathogenicityPatientsPeptidesPerformancePharmacologic SubstancePhasePopulationProbabilityProtein IsoformsProteomicsRNA DatabasesRNA SplicingRegulationRelapseResistanceResourcesRoleSamplingSmall Business Innovation Research GrantSourceSpliceosomesSurface AntigensTechniquesTechnologyTertiary Protein StructureTherapeuticTimeTrainingTranscriptTranslationsTumor-DerivedWorld Health Organizationbaseclinically relevantcostdrug developmentdrug discoveryhigh throughput technologyhuman diseasehuman monoclonal antibodiesimmunogenicinnovative technologiesknowledge basemachine learning algorithmmelanomamortalitynew therapeutic targetnovelnovel therapeuticspatient biomarkerspatient stratificationresponsesuccesstherapeutic developmenttherapy resistanttranscriptome sequencingtumortumor heterogeneity
项目摘要
Human monoclonal antibodies are among the fastest growing therapeutic modalities, with
over sixty compounds approved by FDA to treat infections, autoimmunity, chronic inflammation
and cancer. In combination, these diseases are responsible for the deaths of 50 million people
annually, according to the World Health Organization. However, the advent of therapeutic
immunologics is expected to significantly reduce the associated morbidity and mortality,
particularly for oncologic diseases. Currently, 15 immuno-oncologic (IO) treatments are
commercially available and comprise a growing market that is expected to reach $100B by 2022.
IO therapeutics effectively attack cancer by selectively binding tumor-specific protein domains on
the cell surface, referred to as tumor-associated ectodomains (TAEs). However, many cancers
remain insensitive to available IO as effective and safe TAEs are difficult to identify.
Standard methods to detect TAEs are costly, time-consuming and limited in their ability to
discover novel targets, necessitating the development of innovative technologies to circumvent
this burden. RNAseq is currently the most effective method to discover novel splicing isoforms, is
high-throughput, sensitive and inexpensive. Envisagenics has been at the forefront of RNAseq-
based splicing characterization since the release of its SpliceCore® platform. Here, we propose
to develop SpliceIO, a novel drug discovery platform that integrates the Envisagenics’ SpliceCore
knowledge base with machine learning algorithms to enable rapid identification of aberrant
splicing-derived TAEs using RNAseq data. In this Phase I SBIR proposal, we will develop and
apply SpliceIO in the context of Acute Myeloid Leukemia, a cancer particularly resistant to IO but
highly associated with splicing mis-regulation and mutations within key spliceosome components.
We will identify and validate TAEs in vitro using established leukemia cell lines and patient-derived
bone marrow aspirates in collaboration with Dr. Omar Abdel-Wahab from Memorial Sloan
Kettering Cancer Center. Collectively, the aims outlined herein will allow us to both develop and
validate a novel splicing-dependent TAE identification platform to provide new sources of drug
targets while dramatically reducing the time and cost associated with their development. In
addition, this will allow Envisagenics to create new partnership opportunities for IO co-
development with pharmaceutical companies. If successful, this pipeline can be used to identify
drug targets and/or biomarkers for patient stratification in cancer and inflammatory diseases in
the context of an SBIR Phase II grant.
人单克隆抗体是发展最快的治疗方式之一
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARTIN AKERMAN其他文献
MARTIN AKERMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARTIN AKERMAN', 18)}}的其他基金
Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
- 批准号:
10647773 - 财政年份:2022
- 资助金额:
$ 30.15万 - 项目类别:
Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
- 批准号:
10482502 - 财政年份:2022
- 资助金额:
$ 30.15万 - 项目类别:
Comprehensive validation and commercial readiness of SpliceIO, a software platform for neoantigen discovery using RNA-seq data
SpliceIO 的全面验证和商业准备,这是一个使用 RNA-seq 数据发现新抗原的软件平台
- 批准号:
10838973 - 财政年份:2022
- 资助金额:
$ 30.15万 - 项目类别:
SpliceCore: A cloud-based platform to detect, quantify and interpret alternative splicing variation from next-generation sequencing data.
SpliceCore:一个基于云的平台,用于检测、量化和解释下一代测序数据中的选择性剪接变异。
- 批准号:
8980250 - 财政年份:2015
- 资助金额:
$ 30.15万 - 项目类别: