Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
基本信息
- 批准号:8918691
- 负责人:
- 金额:$ 27.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAlgorithmsAntineoplastic AgentsAutomationBindingBinding SitesChargeChemicalsComputersComputing MethodologiesDevelopmentDiseaseDockingDrug IndustryEthanolFaceFailureFamily suidaeFree EnergyGoalsHeadHealthHealth BenefitHydration statusIndividualLeadLettersLibrariesLigand BindingLiverMarketingMethodsMethyltransferaseModelingModificationMolecularMolecular MachinesPharmaceutical PreparationsPharmacologic SubstanceProcessPropertyProteinsPublic HealthRelative (related person)RewardsSamplingSpeedStagingStructureTechniquesTestingTimeWorkbaseblindcommon treatmentcostdrug discoveryesterasefallshistone methyltransferaseimprovedin vivoinhibitor/antagonistinnovationlead seriesmolecular dynamicsnovel strategiesphysical propertyresearch studyscreeningsimulationsmall moleculetool
项目摘要
DESCRIPTION (provided by applicant): Pharmaceutical drug discovery is time-consuming and expensive, with each new drug brought to market now costing roughly $1 billion on average. This cost is driven by the difficulty of drug discovery, and in part by the amount of tria and error involved in the process of finding initial "hits" which modulate the function of a biomolecule, and then refining these into "leads" which have adequate affinity for the biomolecular target and other desirable properties. Computational methods ideally could guide this process, reducing the amount of trial and error involved by suggesting hits in advance of experiment and predicting chemical modifications which will improve these into leads, enhancing affinity while maintaining drug-like properties. But current computational methods are not adequate to change the discovery process in this way. Recent innovations in alchemical free energy calculations based on molecular simulations show considerable promise at reaching the level of accuracy needed to help drug discovery, but these simulations require considerable expertise to set up and conduct, and a great deal of computer power. This proposal focuses on lowering these barriers, providing a new approach to automatically plan and set up these calculations, and improved computational efficiency. Alchemical free energy calculations are one of the most physically realistic computational approaches available, and one of the most promising in terms of accuracy. This project's aims are to (1) develop a new tool to automate setup of relative binding free energy calculations for drug lead optimization; (2) efficiently calculate ligand binding mode occupancies, dramatically reducing the computational expense of binding free energy predictions; and (3) use these techniques to guide experimental drug discovery of histone methyltransferase inhibitors, which show considerable promise as potential anti-cancer drugs. While considerable effort has gone into alchemical free energy calculations, one innovative aspect of this work is the focus on predicting binding mode as well as binding affinity. This is handled by using fast docking methods, in combination with exploratory simulations, to identify a variety of stable ligand binding modes, then including all of these in binding free energy calculations, so that bound structures of individual inhibitors need not be known in advance. This work will speed up promising tools for affinity calculation, and improve automation so that they can more easily be applied to problems in drug discovery. The long-term goal of these techniques is to change the early stage drug discovery process by providing robust computational affinity predictions, and this work provides an important step in that direction.
药物研发是一项耗时且昂贵的工作,目前每种新药上市的平均成本约为10亿美元。这种成本是由药物发现的困难所驱动的,并且部分地由发现调节生物分子功能的初始“命中”的过程中所涉及的tria和错误的量所驱动,然后将这些改进为对生物分子靶标具有足够亲和力和其他期望性质的“先导物”。理想情况下,计算方法可以指导这一过程,通过在实验之前提出命中建议并预测将其改进为先导化合物的化学修饰,减少所涉及的试错量,从而增强亲和力,同时保持药物样性质。但是目前的计算方法不足以以这种方式改变发现过程。 最近基于分子模拟的炼金术自由能计算的创新在达到帮助药物发现所需的准确性水平方面显示出相当大的希望,但这些模拟需要相当多的专业知识来设置和进行,以及大量的计算机能力。该提案的重点是降低这些障碍,提供一种新的方法来自动规划和设置这些计算,并提高计算效率。 炼金术自由能计算是物理上最现实的计算方法之一,也是最有希望的准确性之一。该项目的目标是:(1)开发一种新的工具,用于自动设置相对结合自由能的计算,以优化药物先导化合物;(2)有效地计算配体结合模式的占用率,大大减少结合自由能预测的计算费用;以及(3)使用这些技术来指导组蛋白甲基转移酶抑制剂的实验药物发现,其作为潜在的抗癌药物显示出相当大的前景。 虽然相当大的努力已经进入炼金术的自由能计算,这项工作的一个创新方面是集中在预测结合模式以及结合亲和力。这是通过使用快速对接方法,结合探索性模拟,以确定各种稳定的配体结合模式,然后包括所有这些在结合自由能计算,使个别抑制剂的结合结构不需要事先知道。 这项工作将加速有前途的亲和力计算工具,并提高自动化程度,使它们更容易应用于药物发现中的问题。这些技术的长期目标是通过提供强大的计算亲和力预测来改变早期药物发现过程,而这项工作为该方向迈出了重要一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Lowell Mobley其他文献
David Lowell Mobley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Lowell Mobley', 18)}}的其他基金
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
- 批准号:
10552325 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
9932112 - 财政年份:2018
- 资助金额:
$ 27.95万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
10165354 - 财政年份:2018
- 资助金额:
$ 27.95万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
10000168 - 财政年份:2018
- 资助金额:
$ 27.95万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
10245037 - 财政年份:2018
- 资助金额:
$ 27.95万 - 项目类别:
Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
- 批准号:
10472624 - 财政年份:2014
- 资助金额:
$ 27.95万 - 项目类别:
Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
- 批准号:
8613366 - 财政年份:2014
- 资助金额:
$ 27.95万 - 项目类别:
Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
- 批准号:
9017053 - 财政年份:2014
- 资助金额:
$ 27.95万 - 项目类别:
Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
- 批准号:
9885888 - 财政年份:2014
- 资助金额:
$ 27.95万 - 项目类别:
Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
- 批准号:
10261348 - 财政年份:2014
- 资助金额:
$ 27.95万 - 项目类别:
相似国自然基金
基于复合物结构预训练与元学习的药物靶点亲和力预测研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于深度学习的药物-靶点结合亲和力预测关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
WDR5蛋白全新口袋WAF特异性亲和小分子的构效关系和作用机制研究
- 批准号:QN25B020016
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
PRR佐剂调控APCs表面pMHC复合物稳定性
诱导高亲和力TCR T细胞克隆应答的机制
研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
超高亲和力、高亮度 Dimer 荧光 RNA 探针用于活细胞 RNA 单分子成像
- 批准号:24ZR1432500
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
亲和力引导联合Tsuji-Trost反应特异性标记胶质母细胞瘤TDO2的机理及应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
羟基磷灰石高亲和力多效复合肽在根尖周炎中的应用探讨和机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
高亲和力、稳定性、广谱性非甾体类抗炎药物纳米抗体的筛选及分
子识别机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
多级适配体的精准识别与亲和力调控用于三阴乳腺癌循环肿瘤细胞的捕获与抑制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
探索亲和力优化的 AXL-CAR-T 治疗甲状腺
未分化癌的安全性和有效性
- 批准号:TGY24H160109
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Continuing Grant