Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
基本信息
- 批准号:9885888
- 负责人:
- 金额:$ 34.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAffinityAntineoplastic AgentsAutomationBackBenchmarkingBindingBiological AssayBreast Cancer CellBypassComputational TechniqueComputersComputing MethodologiesConsumptionDevelopmentDiseaseEmploymentEnsureEquilibriumEvaluationFaceFailureFoundationsFree EnergyHealth BenefitIndustrializationInfrastructureLeadLigand BindingLigandsLigaseMainstreamingMalignant NeoplasmsMolecularMolecular MachinesMotionPharmaceutical PreparationsPharmacologic SubstanceProcessPropertyProteinsPublic HealthPublicationsRewardsRotationSamplingSeriesSolidSolubilitySystemTechniquesTechnologyTestingTimeUbiquitinWaterWorkanticancer treatmentbaseblindcommon treatmentcomputerized toolscostdesigndrug discoveryflexibilityimprovedinhibitor/antagonistinnovationlead optimizationmolecular dynamicsmutantnovel anticancer drugnovel therapeuticsoverexpressionphysical modelpredictive testprospectiverepairedscreeningsimulationsmall moleculesuccesstooltumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Pharmaceutical drug discovery is time-consuming and expensive, with each new drug brought to market now
costing well over $1 billion on average. This cost is driven by the difficulty of drug discovery, and in part by the
amount of trial and error involved in the process of finding initial “hits” which modulate the function of a biomolecule,
and then refining these into “leads” which have adequate affinity for the biomolecular target and other desirable
properties. Here, we develop and improve computational methods to guide this process, allowing the potential
efficacy of prospective leads to be tested computationally prior to their creation — dramatically reducing the
amount of trial and error involved in the process and guiding the molecular design process.
Here, we build on previous work in the group and the field on alchemical free energy calculations based on
molecular simulations — the most promising present computational technique for guiding drug discovery. However,
such techniques work well only for a limited subset of cases, require considerable expertise to employ, and even
their limitations are not yet well understood. Here, we focus on expanding the range of systems which can be
treated with these techniques, making the calculations more robust and rapid, improving accuracy, and identifying
and isolating remaining deficiencies for repair.
Alchemical free energy calculations hold particular promise both because of their accuracy and physical real-
ism. Here, we focus on technology and applications of these calculations, focusing on (1) improved efficiency
and accuracy of binding free energy calculations; (2) automation and large-scale benchmarking of free energy
calculations to guide work to ensure robustness and accuracy; and (3) applications to utilizing simulations and
free energy calculations to guide lead discovery and optimization of SUMO E-1 inhibitors as potential anti-cancer
drugs. Broadly, Aims 1-2 focus on iteratively improving and testing computational tools, whereas Aim 3 focuses
on a specific application with experimental collaborators.
This work promises more accurate and more rapid free energy calculations, with broader scope so that they can
reliably be applied to molecular design problems in drug discovery and elsewhere. Our long-term work aims to
produce a workflow where a chemist developing new molecules to bind a particular target could input hundreds
of potential compounds to synthesize next into a computer before leaving work one day, and return to work the
following morning to find these compounds automatically prioritized based on predicted target affinity, selectivity,
solubility and other properties, allowing years worth of synthesis and assays to be bypassed. Here, we develop,
test and apply technologies to help make this workflow possible, building on our extensive previous success in
physical modeling for binding prediction. This also leverages and extends technologies built in our prior R01.
项目总结/摘要
制药药物的发现是耗时和昂贵的,现在每一种新药都被推向市场
平均花费超过10亿美元。这一成本是由药物发现的困难造成的,部分原因是
在寻找调节生物分子功能的初始“命中”的过程中,
然后将其提炼成对生物分子靶点有足够亲和力的“引线”,
特性.在这里,我们开发和改进计算方法来指导这一过程,
在创建潜在销售线索之前,通过计算测试潜在销售线索的有效性-极大地减少
大量的试验和错误涉及的过程和指导分子设计过程。
在这里,我们以小组和炼金术自由能计算领域之前的工作为基础,基于
分子模拟-目前最有前途的指导药物发现的计算技术。然而,在这方面,
这种技术仅对有限的情况子集有效,需要相当多的专业知识来使用,甚至
它们的局限性尚未得到很好的理解。在这里,我们专注于扩大系统的范围,
处理这些技术,使计算更加强大和快速,提高准确性,并确定
并隔离剩余的缺陷进行修复。
炼金术的自由能计算特别有希望,因为它们的准确性和物理上的真实的-
主义。在这里,我们专注于这些计算的技术和应用,重点是(1)提高效率
自由能计算的自动化和大规模基准测试
计算,以指导工作,以确保鲁棒性和准确性;(3)应用程序,利用模拟和
自由能计算指导SUMO E-1抑制剂作为潜在抗癌药物的先导发现和优化
毒品概括地说,目标1-2侧重于迭代地改进和测试计算工具,而目标3侧重于
在一个特定的应用程序与实验合作者。
这项工作承诺更准确和更快速的自由能计算,更广泛的范围,使他们能够
可靠地应用于药物发现和其他地方的分子设计问题。我们的长期工作目标是
产生一个工作流程,一个化学家开发新的分子来结合一个特定的目标,
在一天下班前,将可能合成的化合物输入计算机,然后返回工作岗位,
第二天早上,根据预测的目标亲和力,选择性,
溶解度和其他性质,从而可以绕过多年的合成和分析。在这里,我们发展,
测试和应用技术,以帮助使这项工作尽快成为可能,建立在我们以前的广泛成功的基础上,
结合预测的物理建模。这也利用和扩展了我们以前的R 01中内置的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Lowell Mobley其他文献
David Lowell Mobley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Lowell Mobley', 18)}}的其他基金
Accelerating drug discovery via ML-guided iterative design and optimization
通过机器学习引导的迭代设计和优化加速药物发现
- 批准号:
10552325 - 财政年份:2023
- 资助金额:
$ 34.35万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
9932112 - 财政年份:2018
- 资助金额:
$ 34.35万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
10165354 - 财政年份:2018
- 资助金额:
$ 34.35万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
10000168 - 财政年份:2018
- 资助金额:
$ 34.35万 - 项目类别:
Advancing predictive physical modeling through focused development of model systems to drive new modeling innovations
通过集中开发模型系统来推进预测物理建模,以推动新的建模创新
- 批准号:
10245037 - 财政年份:2018
- 资助金额:
$ 34.35万 - 项目类别:
Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
- 批准号:
10472624 - 财政年份:2014
- 资助金额:
$ 34.35万 - 项目类别:
Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
- 批准号:
8613366 - 财政年份:2014
- 资助金额:
$ 34.35万 - 项目类别:
Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
- 批准号:
9017053 - 财政年份:2014
- 资助金额:
$ 34.35万 - 项目类别:
Alchemical free energy methods for efficient drug lead optimization
用于高效先导药物优化的炼金自由能方法
- 批准号:
8918691 - 财政年份:2014
- 资助金额:
$ 34.35万 - 项目类别:
Computational alchemy for molecular design and optimization
分子设计和优化的计算炼金术
- 批准号:
10261348 - 财政年份:2014
- 资助金额:
$ 34.35万 - 项目类别:
相似国自然基金
基于语义理解的中文地址匹配关键技术研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于众源地址数据的标准地址集智能化构建方法研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向空间语义建模与检索的城市地址图模型研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
新型智慧城市地名地址数据融合治理关键技术研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于SDN的动目标防御网络关键技术研究
- 批准号:61702535
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.35万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.35万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.35万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.35万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.35万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.35万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.35万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.35万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.35万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.35万 - 项目类别:
Research Grant