Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
基本信息
- 批准号:9173829
- 负责人:
- 金额:$ 34.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:4-Aminobutyrate aminotransferaseAction PotentialsAffectAnatomyAnimalsAreaArray tomographyAutistic DisorderAxonBrainCerebral cortexCerebrumCharacteristicsCognitiveCortical SynchronizationDataDemyelinating DiseasesDevelopmental CourseDiseaseElectrophysiology (science)EquilibriumExperimental Autoimmune EncephalomyelitisFiberGenerationsHumanIndividualInterneuronsInvestigationIon ChannelKnowledgeLearningLengthMeasurementMental disordersModelingModificationMolecularMultiple SclerosisMusMyelinMyoepithelial cellNervous system structureNeuronsParvalbuminsPathologyPatternPharmaceutical PreparationsPharmacotherapyPhysiologicalPlayProcessPropertyProteinsPublished CommentRoleSchizophreniaSensory DeprivationSourceSpeedStimulusSynapsesSynaptic TransmissionThickTimeVigabatrinbarrel cortexbasecell typedensityexcitatory neuronexperiencegamma-Aminobutyric Acidgray matterhippocampal pyramidal neuroninformation processinginhibitor/antagonistmouse modelmyelinationnervous system disorderneural circuitneuronal circuitryneurotransmissionnovelphysical propertypostsynaptic neuronsrelating to nervous systemresponsesomatosensorysynaptic inhibitionwhite matter
项目摘要
Axonal myelination of interneurons in cortex: functional significance and plasticity
The speed and efficiency of impulse conduction in myelinated fibers is clearly fundamental to component
density and functional powers of the human nervous system. There is also growing evidence that changes in
myelination can have profound effects on the function of local brain circuits, including synchrony of neuronal
activity and the interaction of neural oscillators. Myelin is most often thought of in association with the
processes of long-axon projection neurons. But recently, we have discovered that the locally-projecting,
relatively short-axon inhibitory interneurons are a major source of myelinated axons within cortical gray matter,
in contrast to the myelin in white matter that forms almost exclusively on the axons of long-distance projecting
excitatory neurons. In particular, interneuronal myelin appears to be confined to interneurons containing the
protein parvalbumin.
Synaptic inhibition is a central feature of neuronal networks. In cortex, numerous types of inhibitory
interneurons participate in regulating the excitatory/inhibitory balance, in neuronal synchronization and cortical
rhythms generation, and in plasticity associated with experience and learning. Even though axonal myelination
defines crucial properties of neuronal transmission, it has not been specifically studied in cortical interneurons.
Furthermore, pathologies of both the cortical inhibitory circuitry and of myelin are associated with many
neurological and mental disorders, including multiple sclerosis, schizophrenia, and autism. Our present
knowledge of myelination in the cortical gray matter, and in particular the myelination of inhibitory axons, is
limited and certainly must be augmented if we are to conquer such devastating disorders.
This proposal is based on a novel combination of electrophysiology and array tomography that delivers
functional, structural and molecular data on individual neurons or pairs of synaptically connected neurons. The
project will begin by investigating myelinated axons of parvalbumin positive basket cells and correlating their
structural organization and molecular composition with the electrophysiological properties of their action
potential discharge and resulting synaptic transmission onto target pyramidal neurons. Once such a baseline
has been established, the contribution of axonal myelination of parvalbumin interneurons to the plasticity of
neuronal circuits will be assessed using barrel cortex sensory deprivation as a model. The project will conclude
with a study of the pathological changes of interneuronal myelination in a mouse model of multiple sclerosis.
This proposal will provide much needed data regarding the organization of myelin of cortical interneurons, the
functional consequences and the plasticity of this organization, and its potential role in multiple sclerosis.
皮层中间神经元轴突髓鞘形成的功能意义和可塑性
有髓神经纤维中脉冲传导的速度和效率显然是神经元组成的基础。
密度和人类神经系统的功能。越来越多的证据表明,
髓鞘形成可以对局部脑回路的功能产生深远的影响,包括神经元的同步性。
活动和神经振荡器的相互作用。髓磷脂最常被认为与
长轴突投射神经元的过程。但最近,我们发现,
相对短的轴突抑制性中间神经元是皮质灰质内有髓鞘轴突的主要来源,
与几乎只在长距离投射的轴突上形成的白色物质中的髓鞘相反,
兴奋性神经元特别是,神经元间髓鞘似乎仅限于含有神经元的中间神经元。
蛋白质小清蛋白。
突触抑制是神经元网络的核心特征。在大脑皮层,
interneurons参与调节兴奋/抑制平衡,在神经元同步和皮质
节奏的产生,以及与经验和学习有关的可塑性。即使轴突髓鞘形成
定义了神经元传递的关键特性,但尚未在皮质中间神经元中进行专门研究。
此外,皮质抑制回路和髓磷脂的病理与许多神经系统疾病有关。
神经和精神障碍,包括多发性硬化症、精神分裂症和自闭症。我们目前
皮质灰质中髓鞘形成的知识,特别是抑制性轴突的髓鞘形成,
如果我们要克服这种破坏性的混乱,这种能力是有限的,当然也必须得到加强。
该建议基于电生理学和阵列断层扫描的新组合,
单个神经元或突触连接神经元对的功能、结构和分子数据。的
项目将开始通过研究小白蛋白阳性篮状细胞的有髓鞘轴突,并将其与
结构组织和分子组成及其作用的电生理特性
潜在的放电和导致的突触传递到目标锥体神经元上。一旦这样的基线
已经建立,小白蛋白中间神经元的轴突髓鞘形成对神经元可塑性的贡献,
将使用桶状皮层感觉剥夺作为模型来评估神经元回路。该项目将结束
研究了多发性硬化小鼠模型神经元间髓鞘形成的病理变化。
这一提议将提供关于皮层中间神经元髓鞘组织的急需数据,
功能的后果和可塑性的这个组织,及其在多发性硬化症的潜在作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vernon Daniel MADISON其他文献
Vernon Daniel MADISON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vernon Daniel MADISON', 18)}}的其他基金
Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
- 批准号:
10626677 - 财政年份:2022
- 资助金额:
$ 34.6万 - 项目类别:
Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
- 批准号:
9315233 - 财政年份:2016
- 资助金额:
$ 34.6万 - 项目类别:
Axonal myelination of interneurons in cortex: functional significance and plasticity
皮质中间神经元的轴突髓鞘形成:功能意义和可塑性
- 批准号:
9898469 - 财政年份:2016
- 资助金额:
$ 34.6万 - 项目类别:
Single synapse analysis of synaptic plasticity by combining electrophysiology and array tomography
结合电生理学和阵列断层扫描的突触可塑性单突触分析
- 批准号:
10059263 - 财政年份:2016
- 资助金额:
$ 34.6万 - 项目类别:
Single-Synapse Analysis of Neocortical Circuit Plasticity
新皮质回路可塑性的单突触分析
- 批准号:
8842414 - 财政年份:2011
- 资助金额:
$ 34.6万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 34.6万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 34.6万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 34.6万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 34.6万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 34.6万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 34.6万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 34.6万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 34.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 34.6万 - 项目类别: