Conformal islet encapsulation for transplantation at vascularized sites to allow physiological insulin secretion
适形胰岛封装,用于在血管化部位移植,以允许生理性胰岛素分泌
基本信息
- 批准号:9293659
- 负责人:
- 金额:$ 22.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-05 至 2017-12-10
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAmericanAntigensAutoimmune DiseasesBeta CellBiocompatible MaterialsCaliberCessation of lifeChronicClinicalClinical TrialsComputer SimulationDiffusionDoseEncapsulatedEngineeringEngraftmentEquilibriumEthylenesFailureFibrinFluorocarbonsFutureGelGlucoseGraft SurvivalHumanHydrogelsHypoxiaImmuneImmunosuppressionIn VitroInbred NOD MiceInjection of therapeutic agentInsulinInsulin-Dependent Diabetes MellitusIslet CellIslets of LangerhansIslets of Langerhans TransplantationLifeLungMeasuresMechanicsMicrocapsules drug delivery systemModelingMusNecrosisNutrientOligonucleotidesOrgan DonorOutcomeOxygenPatientsPermeabilityPharmaceutical PreparationsPhysiologicalPositioning AttributePre-Clinical ModelShapesSiteSulfidesTechnologyTestingThickTimeTranslationsTransplantationWorkblood glucose regulationcapsulediabeticexperienceimprovedinnovationinsulin secretionintraperitonealisletmouse modelnanocarriernanofibernonhuman primatenoveloxygen transportpre-clinicalpreclinical evaluationpreventresponsescaffoldsuccesstransplantation typing
项目摘要
Islet transplantation for type 1 diabetes (T1D) is experiencing increasing clinical success, but its applicability is
currently limited by the need for chronic immunosuppression the amount of islets needed per recipient and the
transplantation site. Encapsulation may allow addressing many shortcomings but so far traditional 1000 µm
diameter capsules have not been shown effective. Most likely, this is because large capsules limit nutrient
transport leading to loss of functionality and, ultimately, death of the islet graft. Recently, we developed an
encapsulation technology that allows `wrapping' single islets with a thin (up to 10 µm) layer of biomaterial,
generating capsules that `conform' to the islet size and shape. By reducing the diffusion distance 10-fold,
conformal coating (CC) increases nutrient transport to the encapsulated islets. By reducing the graft volume
from ~500 mL to ~3 mL, CC also allows transplantation in vascularized sites - not limited to the intraperitoneal
cavity - further maximizing nutrient transport. Our computational models predict that, contrary to traditional
microcapsules, CC grafts at vascularized sites prevent central necrosis due to hypoxia, and allow physiological
glucose-stimulated insulin release. In mice, we showed prompt T1D reversal and long-term euglycemia after
transplantation of fully MHC-mismatched CC grafts without immunosuppression. Accordingly, we hypothesize
that our unique CC technology can allow long-term function of islet transplantation in preclinical models of T1D
without the need for immunosuppression. Further, we hypothesize that by minimizing capsule thickness and
increasing nutrient transport yet protecting the graft, we can minimize the dose of islets required to reverse
T1D. In Aim 1, we will complete the preclinical evaluation of the basic CC platform and determine the
mechanisms associated with graft success. We will establish the efficacy of CC capsules in maintaining long-
term function without immunosuppression in allo and auto-immune settings (Aim 1.1). We will also establish
the efficacy of CC encapsulation of human islets in preclinical models (Aim 1.2). In parallel, in Aim 2, we will
enhance the translational potential of the CC platform by engineering features that minimize the dose of CC
islets required for T1D reversal. We will achieve the ideal balance between nutrient transport and
immunoisolation by minimizing CC thickness and incorporating nanocarriers of immunomodulatory molecules
(Aim 2.1). We will also increase CC graft revascularization to improve inbound and outbound transport by
using clinically translatable pro-angiogenic scaffolds (Aim 2.2). Finally, we will increase oxygen diffusivity in
CC to enhance islet function by incorporating oxygen nanocarriers. This necessary preclinical work will position
the CC technology for translation and application in future nonhuman primate and clinical trials. If successful,
this technology can significantly impact the field by promoting graft survival, the success rate of islet
transplantation yet reducing the need for islets and immunosuppression.
胰岛移植治疗1型糖尿病(T1D)的临床成功率越来越高,但其适用性尚不明确
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alice Tomei其他文献
Alice Tomei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alice Tomei', 18)}}的其他基金
Tissue-engineered lymph node stroma to study peripheral tolerance in autoimmune diabetes
组织工程淋巴结基质研究自身免疫性糖尿病的外周耐受性
- 批准号:
10299866 - 财政年份:2020
- 资助金额:
$ 22.83万 - 项目类别:
Conformal islet encapsulation for transplantation at vascularized sites to allow physiological insulin secretion
适形胰岛封装,用于在血管化部位移植,以允许生理性胰岛素分泌
- 批准号:
10310452 - 财政年份:2017
- 资助金额:
$ 22.83万 - 项目类别:
Conformal islet encapsulation for transplantation at vascularized sites to allow physiological insulin secretion
适形胰岛封装,用于在血管化部位移植,以允许生理性胰岛素分泌
- 批准号:
10062501 - 财政年份:2017
- 资助金额:
$ 22.83万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.83万 - 项目类别:
Research Grant