New methods for quantitative modeling of protein-DNA interactions

蛋白质-DNA 相互作用定量建模的新方法

基本信息

  • 批准号:
    9150688
  • 负责人:
  • 金额:
    $ 35.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-25 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Accurate predictions of transcription factor (TF)-DNA interactions across the human genome are critical for deciphering transcriptional regulatory networks in healthy and diseased cells, as well as for understanding the phenotypic effects of polymorphisms in non-coding genomic regions. However, the most widely used model of TF-DNA binding affinity, the position weight matrix (PWM), is known to provide only an approximation of the true sequence specificity of TFs, because it assumes independence among the base pairs in TF binding sites. More complex binding models have been proposed, but their improvement over PWMs was marginal, either because of limitations of the training data (i.e. due to strong biases, noise, artifacts, or confounding factors) or because the models were not flexible enough to capture complex dependencies in TF binding sites. As a result, current DNA binding models have a limited ability to predict the effects of non-coding genetic variation on TF binding, and they cannot be used to resolve functional differences between closely related TFs with similar DNA binding domains but distinct regulatory roles in the cell. The objective of this application is to overcome these limitations by generating high quality data that will be used to train flexible statistical models to generate TF-DNA binding affinity predictions with accuracies similar to experimental in vitro assays. The central hypothesis, based on preliminary results and previous work, is that both better affinity data and better statistical models are needed in order to predict TF-DNA interactions in human cells with significantly higher accuracy than current models. High quality binding affinity data for 40 human TFs will be generated in Aim 1 using a unique combination of in vitro assays carefully designed to minimizes bias and noise, thus making the data ideal for training complex models. Novel TF-DNA binding models will be developed in Aim 2 using state- of-the-art statistical methods: support vector regression, nonparametric Bayes modeling, and conditional tensor factorization. The models will be tested experimentally in vitro, and by leveraging in vivo data from the ENCODE project. In Aim 3, the new binding models will be used in two applications: 1) to predict the quantitative effects of non-coding single nucleotide polymorphisms on TF binding affinities and TF binding levels, and 2) to predict differential in vivo DNA binding of closely related TFs with similar DNA binding domains but distinct regulatory functions in the cell. Such applications are not possible using current models. Overall, we anticipate that the binding affinity models developed in this project will allow for much more accurate predictions of regulatory TF-DNA interactions than possible using current models, which is significant because it will lead to a better understanding of gene regulatory programs and their misregulation during disease, including understanding the cascade of events that link genetic variation to human disease.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raluca Gordan其他文献

Raluca Gordan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raluca Gordan', 18)}}的其他基金

The role of transcription factor proteins in mutagenesis at regulatory sites
转录因子蛋白在调控位点诱变中的作用
  • 批准号:
    10552569
  • 财政年份:
    2020
  • 资助金额:
    $ 35.02万
  • 项目类别:
The role of transcription factor proteins in mutagenesis at regulatory sites
转录因子蛋白在调控位点诱变中的作用
  • 批准号:
    10092203
  • 财政年份:
    2020
  • 资助金额:
    $ 35.02万
  • 项目类别:
The role of transcription factor proteins in mutagenesis at regulatory sites
转录因子蛋白在调控位点诱变中的作用
  • 批准号:
    10333272
  • 财政年份:
    2020
  • 资助金额:
    $ 35.02万
  • 项目类别:
New methods for quantitative modeling of protein-DNA interactions
蛋白质-DNA 相互作用定量建模的新方法
  • 批准号:
    9546780
  • 财政年份:
    2015
  • 资助金额:
    $ 35.02万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 35.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了