RNA Targets for Fragile X Mental Retardation Protein
脆性 X 智力迟钝蛋白的 RNA 靶标
基本信息
- 批准号:9235006
- 负责人:
- 金额:$ 21.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-26 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAnabolismAnimal ModelAutistic DisorderBindingBinding ProteinsBinding SitesBiochemicalBioinformaticsBiological AssayBrainCategoriesCell physiologyCharacteristicsConflict (Psychology)DataData SetDefectDevelopmentDiseaseElementsFMR1Fragile X SyndromeGeneticGenetic TranslationGoalsHumanHuman ActivitiesInheritedIntellectual functioning disabilityKH DomainKnowledgeLearningLeftMediatingMedicalMemoryMental RetardationMessenger RNAMethodsMissionMolecularMutationNervous System PhysiologyNeurologicNeuronsPathogenesisPlayProcessProtein BiosynthesisProtein EngineeringProteinsPublic HealthPublishingRNARNA BindingRNA Recognition MotifRNA SequencesRNA-Binding ProteinsRNA-Protein InteractionReportingResearch PersonnelRibosomesRoentgen RaysRoleSpecificityStructureSynapsesSynaptic plasticitySyndromeTertiary Protein StructureTestingTherapeuticTranslational RepressionTranslationsUnited States National Institutes of HealthUntranslated RNAVariantX-Ray Crystallographybasecombinatorialdesignfunctional losshigh rewardhigh riskhuman diseaseimpressioninsightlong term memorymutantneurological pathologynext generation sequencingnovelnovel strategiesnovel therapeutic interventionprotein functionresearch study
项目摘要
Summary
mRNA-binding proteins play a pivotal role in the development and function of the nervous system and defects
in the function of these proteins underlie a broad spectrum of neurological pathologies. Fragile X Mental
Retardation Protein (FMRP) is a paradigm of disease-associated RNA-binding proteins because of its essential
contribution to the development and activity of the brain and its central role in several human disorders that
affect hundreds of thousands people. The loss of FMRP due to transcriptional silencing or protein mutations
leads to Fragile X syndrome (FXS), a common familial cause of inherited intellectual disability and autism that
currently lacks an efficient medical treatment. On the molecular level, the absence of functional FMRP results
in exaggerated protein biosynthesis that is normally held in check by FMRP-mediated translational repression
of selected mRNAs. Previous studies have reported mostly conflicting datasets of FMRP targets, and despite
its vital importance, the mechanism of mRNA selection by FMRP remains unclear. This lack of definitive
knowledge on the principles of FMRP-RNA recognition limits both understanding of FXS and the development
of rational therapeutic approaches for its treatment. Our preliminary structural data suggest that FMRP can
bind RNA in sequence-specific manner and that RNA binding of FMRP is not truly promiscuous. The objective
of this proposal is to determine specific RNA targets for human FMRP and understand the molecular principles
of FMRP-RNA recognition. The hypothesis is that RNA-binding domains of FMRP recognize RNA sequence-
specifically and that combinations of these RNA motifs determine binding to natural RNAs. To test this
hypothesis, FMRP binding sites will be identified using a novel biochemical approach and structural studies.
Specific Aim 1 is devoted to identification of short RNA sequences that bind specifically to isolated KH domains
of FMRP by using a novel “bottom-up” approach that combines RNA capture experiments with Next
Generation Sequencing. Specific Aim 2 will characterize the molecular features of FMRP that are essential for
specific RNA binding by using biochemical methods and X-ray crystallography. Specific Aim 3 will aim to
develop mutant FMRP proteins with altered RNA specificity to study various FMRP functions. Together, these
results will define RNA sequence elements required for interactions with FMRP, help to identify natural RNA
targets of FMRP, and design mutant FMRP proteins to interrogate various FMRP functions in the animal
models of FXS. The proposal is highly relevant to public health and the NIH mission since it will provide
insights on the RNA recognition and the mechanism of FMRP-mediated translational inhibition, the activities
associated with development of FXS, autism and other disorders. Understanding how FMRP functions will
advance searches for novel therapeutic interventions against FXS and related diseases.
概括
mRNA结合蛋白在神经系统的发育和功能以及缺陷中发挥着关键作用
这些蛋白质的功能是广泛的神经病理学的基础。脆弱X精神
延迟蛋白 (FMRP) 是疾病相关 RNA 结合蛋白的一个范例,因为它具有重要的作用
对大脑发育和活动的贡献及其在多种人类疾病中的核心作用
影响数十万人。由于转录沉默或蛋白质突变导致 FMRP 丢失
导致脆性 X 综合征 (FXS),这是遗传性智力障碍和自闭症的常见家族原因,
目前缺乏有效的医疗手段。在分子水平上,缺乏功能性 FMRP 结果
过度的蛋白质生物合成通常受到 FMRP 介导的翻译抑制的控制
选定的 mRNA。先前的研究报告了 FMRP 目标的数据集大多相互矛盾,尽管
尽管 FMRP 选择 mRNA 的重要性仍不清楚,但其机制仍不清楚。这种缺乏确定性的
对 FMRP-RNA 识别原理的了解限制了对 FXS 的理解和开发
其治疗的合理治疗方法。我们的初步结构数据表明 FMRP 可以
FMRP 以序列特异性方式结合 RNA,并且 FMRP 的 RNA 结合并不是真正混杂的。目标
该提案的目的是确定人类 FMRP 的特定 RNA 靶标并了解分子原理
FMRP-RNA 识别。假设 FMRP 的 RNA 结合域识别 RNA 序列 -
具体而言,这些 RNA 基序的组合决定了与天然 RNA 的结合。为了测试这个
假设,FMRP 结合位点将使用新的生化方法和结构研究来鉴定。
具体目标 1 致力于鉴定与分离的 KH 结构域特异性结合的短 RNA 序列
FMRP 通过使用一种新颖的“自下而上”方法将 RNA 捕获实验与 Next 相结合
世代测序。具体目标 2 将描述 FMRP 的分子特征,这些特征对于
使用生化方法和 X 射线晶体学进行特异性 RNA 结合。具体目标 3 将旨在
开发具有改变的 RNA 特异性的突变 FMRP 蛋白来研究各种 FMRP 功能。在一起,这些
结果将定义与 FMRP 相互作用所需的 RNA 序列元件,有助于识别天然 RNA
FMRP 的靶标,并设计突变 FMRP 蛋白来探究动物中的各种 FMRP 功能
FXS 型号。该提案与公共卫生和 NIH 使命高度相关,因为它将提供
对 RNA 识别和 FMRP 介导的翻译抑制机制的见解、活性
与 FXS、自闭症和其他疾病的发展有关。了解 FMRP 的运作方式
提前寻找针对 FXS 及相关疾病的新型治疗干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Serganov其他文献
Alexander Serganov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Serganov', 18)}}的其他基金
Molecular Basis for mRNA Decay in Bacteria - summer supplement
细菌 mRNA 衰变的分子基础 - 夏季补充品
- 批准号:
10805871 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
A universal approach for determining three-dimensional RNA structures
确定三维 RNA 结构的通用方法
- 批准号:
10724848 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Molecular Basis for mRNA Decay in Bacteria - equipment supplement
细菌中 mRNA 衰变的分子基础 - 设备补充
- 批准号:
10794537 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
RNA Targets for Fragile X Mental Retardation Protein
脆性 X 智力迟钝蛋白的 RNA 靶标
- 批准号:
9357716 - 财政年份:2016
- 资助金额:
$ 21.19万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 21.19万 - 项目类别:
Continuing Grant














{{item.name}}会员




