Molecular Basis for mRNA Decay in Bacteria
细菌中 mRNA 衰变的分子基础
基本信息
- 批准号:10250555
- 负责人:
- 金额:$ 35.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAntibioticsApplications GrantsBacteriaBacterial InfectionsBinding SitesBiochemicalBiochemistryBiologicalCatalytic RNACell physiologyCellsComplexCryoelectron MicroscopyDNA-Directed RNA PolymeraseDevelopmentElectron MicroscopyEnzymesEscherichia coliEukaryotaExcisionFoundationsFutureGeneticGenetic TranscriptionGoalsGrowthHealthHost DefenseHumanHydrolaseInvadedKineticsKnowledgeLifeLysineMammalian CellMeasuresMediatingMessenger RNAMetabolicMetabolismModificationMolecularMutagenesisMutation AnalysisNucleosidesNucleotidesOrganismPathway interactionsPeptidoglycanPersonal SatisfactionProkaryotic CellsPropertyProtein BiosynthesisProteinsRNARNA BindingRNA CapsRNA DecayRNA DegradationRNA StabilityReactionResearchResearch ProposalsRoentgen RaysSpecificityStressStructureSystemTimeTranscriptTranscription InitiationTranslatingVirulenceWorkX-Ray Crystallographyaminoacid biosynthesisbasecryogenicsdecapping enzymedesigndiadenosine tetraphosphateenvironmental changeenzyme structureexperimental studyinhibitor/antagonistinsightmRNA DecaymRNA StabilitymRNA Transcript DegradationmRNA cappingmRNA decappingnovelnucleoside triphosphatepathogenic bacteriaresponsethree dimensional structuretranscriptome sequencingvirtual
项目摘要
Summary
mRNA degradation affects virtually all cellular activities by limiting the number of times each mRNA can be
translated into protein molecules. By affecting protein synthesis, mRNA degradation allows organisms to adapt
to changing environmental conditions and is therefore particularly important in enabling pathogenic bacteria to
invade and survive in host cells. mRNA degradation in E. coli and many other bacteria involves a decay
pathway triggered by modification of the 5¢ end of the mRNA transcript by RppH and other enzymes. A better
understanding of this pathway could enable the development of new strategies to impede bacterial invasion
and survival in hosts. A recently discovered 5¢-end modification of E. coli mRNAs is nucleoside tetraphosphate
(Np4) caps, originated from stress-induced “alarmones”, such as Ap4A, present in all domains of life. Despite
the identification of capping and decapping enzymes in E. coli, practically nothing is known about mechanisms
of cap addition and removal. This proposal details a research plan to elucidate the mechanisms of Np4 capping
and decapping and the connection between cellular metabolism and RNA degradation in E. coli. Aim 1
addresses how the RNA polymerase adds Np4A cap precursor to mRNA molecules by using cryogenic
electron microscopy, X-ray crystallography, and biochemical experiments to reveal the mechanism and
specificity of incorporation. Aim 2 will uncover how the Np4 cap is removed by RppH, using X-ray
crystallography and biochemistry to understand the specificity and the catalytic mechanisms of decapping. Aim
3 elucidates the molecular basis of Np4 cap removal by ApaH, using X-ray crystallography and biochemistry to
understand the catalytic mechanism and RNA binding rules of this enzyme. Aim 4 reveals a relationship
between cellular metabolism and mRNA degradation. This aim uses structure-based genetic uncoupling to
identify how the metabolic enzyme DapF affects RNA degradation under various growth conditions. The results
of these studies will significantly advance our knowledge of the steps leading to 5¢-end-dependent mRNA
degradation and how modulation of this pathway affects the viability of bacteria.
概括
mRNA 降解通过限制每个 mRNA 降解的次数,影响几乎所有细胞活动。
翻译成蛋白质分子。通过影响蛋白质合成,mRNA 降解使生物体能够适应
改变环境条件,因此对于使病原菌能够
侵入宿主细胞并在其中存活。大肠杆菌和许多其他细菌中的 mRNA 降解涉及衰变
RppH 和其他酶对 mRNA 转录物 5¢ 末端的修饰触发的途径。更好的
了解这一途径可以帮助开发阻止细菌入侵的新策略
和在宿主体内的生存。最近发现的大肠杆菌 mRNA 5 末端修饰是四磷酸核苷
(Np4) 帽源自压力诱导的“警报素”,例如 Ap4A,存在于生命的各个领域。尽管
大肠杆菌中加帽和脱帽酶的鉴定,实际上对其机制一无所知
盖的添加和移除。该提案详细阐述了阐明 Np4 封端机制的研究计划
大肠杆菌中的脱帽以及细胞代谢和 RNA 降解之间的联系。目标1
解决了 RNA 聚合酶如何使用低温将 Np4A 帽前体添加到 mRNA 分子中
电子显微镜、X射线晶体学和生化实验揭示了其机制和
合并的特殊性。目标 2 将揭示 RppH 如何使用 X 射线去除 Np4 帽
晶体学和生物化学,以了解脱盖的特异性和催化机制。目的
图 3 使用 X 射线晶体学和生物化学阐明了 ApaH 去除 Np4 帽的分子基础
了解该酶的催化机制和RNA结合规则。目标 4 揭示关系
细胞代谢和 mRNA 降解之间的关系。该目标使用基于结构的遗传解偶联来
确定代谢酶 DapF 在不同生长条件下如何影响 RNA 降解。结果
这些研究将显着提高我们对 5′ 端依赖性 mRNA 步骤的了解
降解以及该途径的调节如何影响细菌的活力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Serganov其他文献
Alexander Serganov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Serganov', 18)}}的其他基金
Molecular Basis for mRNA Decay in Bacteria - summer supplement
细菌 mRNA 衰变的分子基础 - 夏季补充品
- 批准号:
10805871 - 财政年份:2023
- 资助金额:
$ 35.6万 - 项目类别:
A universal approach for determining three-dimensional RNA structures
确定三维 RNA 结构的通用方法
- 批准号:
10724848 - 财政年份:2023
- 资助金额:
$ 35.6万 - 项目类别:
Molecular Basis for mRNA Decay in Bacteria - equipment supplement
细菌中 mRNA 衰变的分子基础 - 设备补充
- 批准号:
10794537 - 财政年份:2023
- 资助金额:
$ 35.6万 - 项目类别:
RNA Targets for Fragile X Mental Retardation Protein
脆性 X 智力迟钝蛋白的 RNA 靶标
- 批准号:
9235006 - 财政年份:2016
- 资助金额:
$ 35.6万 - 项目类别:
RNA Targets for Fragile X Mental Retardation Protein
脆性 X 智力迟钝蛋白的 RNA 靶标
- 批准号:
9357716 - 财政年份:2016
- 资助金额:
$ 35.6万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 35.6万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 35.6万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 35.6万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 35.6万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 35.6万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 35.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 35.6万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 35.6万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 35.6万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 35.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




