Modeling Emergent Behaviors in Systems Biology: A Biological Physics Approach
系统生物学中的突发行为建模:生物物理方法
基本信息
- 批准号:9137947
- 负责人:
- 金额:$ 30.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-18 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBehaviorBiologicalBiological ModelsBiological PhenomenaBiologyCellsCommunitiesComplexConsumptionDNA SequenceDataData AnalysesDisciplineEcologyEngineeringGoalsHigh-Throughput Nucleotide SequencingHuman MicrobiomeInformation TheoryLengthLinear AlgebraMachine LearningMammalian CellModelingMuscleNeuronsPhysicsProtocols documentationQuantitative MicroscopyResearchScientistSeriesSystemSystems BiologyTechniquesTherapeuticTranscendWorkbasecell typecomputerized toolsgene interactionhuman diseaseimprovedinterdisciplinary approachmicrobialmicrobial communitymicroorganism interactionsynthetic biologytheoriestool
项目摘要
Project Summary
Biology is full of stunning examples of emergent behaviors – behaviors that arise from, but cannot be reduced
to, the interactions of the constituent parts that make up the system under consideration. These behaviors
span the full spectrum of length scales, from the emergence of distinct cell fates (e.g. neurons, muscle, etc.)
due to the interactions of genes within cells, to the formation of complex ecological communities arising from
the interactions of thousands of species. The overarching goal of my research is to develop new
conceptual, theoretical, and computational tools to model such emergent, system-level behaviors in
biology. To do so, we utilize an interdisciplinary approach that is grounded in Biological Physics, but draws
heavily from Machine Learning, Information Theory, and Theoretical Ecology. Our work is unified and
distinguished by our deep commitment to integrating theory with the vast amount of biological data now
being generated by modern DNA sequencing-based techniques and quantitative microscopy. An important
goal of the proposed research is to find common concepts and tools that transcend traditional biological
sub-disciplines and models systems. The proposed research pursues four distinct but conceptually
interrelated research directions: (1) understanding how distinct cell fates emerge from bimolecular
interactions within mammalian cells (2) investigating how bimolecular networks within cells exploit energy
consumption to improve computations, with applications to Synthetic Biology; (3) identifying the ecological
principles governing community assembly in microbial communities and developing techniques for synthetically
engineering ecological communities; and (4) developing new machine learning algorithms and techniques for
biological data analysis. In addition to developing physics-based models for diverse biological phenomena, the
proposed research will yield a series of practical important tools and algorithms which we will make
publically available including: (1) a new linear-algebra based algorithm for assessing the fidelity of directed
differentiation and cellular reprogramming protocols and visualizing reprogramming/differentiation dynamics
and (2) improved algorithms for inferring microbial interactions in the human microbiome from high-throughput
sequence data. These computational tools will allow scientists to realize the immense therapeutic potential of
cellular reprogramming and microbial ecology-based techniques for studying and treating human disease.
项目摘要
生物学充满了涌现行为的惊人例子--这些行为源于,但不能被减少
到,构成所考虑的系统的组成部分的相互作用。这些行为
跨越长度尺度的全谱,从不同细胞命运的出现(例如神经元、肌肉等)
由于细胞内基因的相互作用,形成了复杂的生态群落,
数千种物种的相互作用。我研究的首要目标是开发新的
概念,理论和计算工具来模拟这种紧急的,系统级的行为,
生物学要做到这一点,我们利用跨学科的方法,是在生物物理学的基础,但提请
主要来自机器学习、信息论和理论生态学。我们的工作是统一的,
我们致力于将理论与大量的生物数据相结合,
是由现代DNA测序技术和定量显微镜产生的。一个重要
这项研究的目标是找到超越传统生物学的共同概念和工具。
子学科和模型系统。本研究从四个不同的概念出发,
相关的研究方向:(1)了解不同的细胞命运是如何从双分子
哺乳动物细胞内的相互作用(2)研究细胞内的双分子网络如何利用能量
消费,以改善计算,与应用合成生物学;(3)确定生态
微生物群落中群落组装的原则和开发综合利用的技术
工程生态社区;(4)开发新的机器学习算法和技术,
生物数据分析除了为各种生物现象开发基于物理学的模型外,
提出的研究将产生一系列实用的重要工具和算法,我们将使
(1)一种新的基于线性代数的算法,用于评估有向
分化和细胞重编程方案以及可视化重编程/分化动力学
和(2)用于从高通量推断人类微生物组中微生物相互作用的改进算法
序列数据这些计算工具将使科学家们认识到,
细胞重编程和基于微生物生态学的技术,用于研究和治疗人类疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pankaj Mehta其他文献
Pankaj Mehta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pankaj Mehta', 18)}}的其他基金
MODELING EMERGENT BEHAVIORS IN SYSTEMS BIOLOGY: A BIOLOGICAL PHYSICS APPROACH
系统生物学中的突发行为建模:生物物理方法
- 批准号:
10330838 - 财政年份:2016
- 资助金额:
$ 30.27万 - 项目类别:
MODELING EMERGENT BEHAVIORS IN SYSTEMS BIOLOGY: A BIOLOGICAL PHYSICS APPROACH
系统生物学中的突发行为建模:生物物理方法
- 批准号:
10580813 - 财政年份:2016
- 资助金额:
$ 30.27万 - 项目类别:
Modeling Emergent Behaviors in Systems Biology: A Biological Physics Approach
系统生物学中的突发行为建模:生物物理方法
- 批准号:
9317502 - 财政年份:2016
- 资助金额:
$ 30.27万 - 项目类别:
A quantitative study of cell-to-cell communication in bacteria
细菌细胞间通讯的定量研究
- 批准号:
8142022 - 财政年份:2008
- 资助金额:
$ 30.27万 - 项目类别:
A quantitative study of cell-to-cell communication in bacteria
细菌细胞间通讯的定量研究
- 批准号:
8334578 - 财政年份:2008
- 资助金额:
$ 30.27万 - 项目类别:
A quantitative study of cell-to-cell communication in bacteria
细菌细胞间通讯的定量研究
- 批准号:
7905836 - 财政年份:2008
- 资助金额:
$ 30.27万 - 项目类别:
A quantitative study of cell-to-cell communication in bacteria
细菌细胞间通讯的定量研究
- 批准号:
7513054 - 财政年份:2008
- 资助金额:
$ 30.27万 - 项目类别:
A quantitative study of cell-to-cell communication in bacteria
细菌细胞间通讯的定量研究
- 批准号:
7678027 - 财政年份:2008
- 资助金额:
$ 30.27万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
METABOLISM: accelerator Mass SpEctrometry to quanTify nanoplastics and decipher their fAte and Behavior in envirOnmentaL and bIological SysteMs
代谢:加速器质谱法可量化纳米塑料并破译其在环境和生物系统中的命运和行为
- 批准号:
EP/Y002733/1 - 财政年份:2024
- 资助金额:
$ 30.27万 - 项目类别:
Research Grant
REU Site: Ecology, Evolution, and Behavior Field Research at Mountain Lake Biological Station
REU 站点:山湖生物站的生态、进化和行为领域研究
- 批准号:
2349462 - 财政年份:2024
- 资助金额:
$ 30.27万 - 项目类别:
Standard Grant
BRITE Pivot: Growing Biological Methods to Improve Soil Behavior for Infrastructure Protection
BRITE 支点:不断发展生物方法来改善土壤行为以保护基础设施
- 批准号:
2227491 - 财政年份:2023
- 资助金额:
$ 30.27万 - 项目类别:
Standard Grant
Biological Mechanisms of Suicidal Behavior among Sexual Minority Adolescents - Supplement
性少数青少年自杀行为的生物学机制 - 补充
- 批准号:
10823709 - 财政年份:2023
- 资助金额:
$ 30.27万 - 项目类别:
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2022
- 资助金额:
$ 30.27万 - 项目类别:
Discovery Grants Program - Individual
The virtual rodent: a platform to study the artificial and biological control of natural behavior
虚拟啮齿动物:研究自然行为的人工和生物控制的平台
- 批准号:
10540574 - 财政年份:2022
- 资助金额:
$ 30.27万 - 项目类别:
The Virtual Rodent: A Platform to Study the Artificial and Biological Control of Natural Behavior
虚拟啮齿动物:研究自然行为的人工和生物控制的平台
- 批准号:
10633144 - 财政年份:2022
- 资助金额:
$ 30.27万 - 项目类别:
Schooling through Vortex Streets; A Biological and Computational Approach to Understanding Collective Behavior in Wild Fish
通过涡街 (Vortex Street) 上学;
- 批准号:
2102891 - 财政年份:2021
- 资助金额:
$ 30.27万 - 项目类别:
Continuing Grant
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2021
- 资助金额:
$ 30.27万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Biological Basis of Social Behavior
REU 网站:社会行为的生物学基础
- 批准号:
1852338 - 财政年份:2020
- 资助金额:
$ 30.27万 - 项目类别:
Continuing Grant