MODELING EMERGENT BEHAVIORS IN SYSTEMS BIOLOGY: A BIOLOGICAL PHYSICS APPROACH
系统生物学中的突发行为建模:生物物理方法
基本信息
- 批准号:10580813
- 负责人:
- 金额:$ 39.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-18 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:Artificial IntelligenceAttentionBehaviorBiochemicalBiologicalBiological ModelsBiological PhenomenaBiologyCellsCommunitiesCommunity NetworksComplexComputational algorithmDataDictyostelium discoideumDisciplineEcologyGoalsInformation TheoryLengthMachine LearningMathematicsModelingModernizationMuscleNeuronsOrganismPhysicsPythonsResearchResourcesScientistSeriesSignal TransductionSourceStatistical AlgorithmSystemSystems BiologyTechniquesTranscendUnited States National Institutes of HealthWorkbehavior predictioncomputerized toolsdeep learningexperimental studygene interactiongene networkheterogenous datahuman diseaseinformation modelinformation processinginterdisciplinary approachmachine learning algorithmmicrobialmicrobial communitymicrobiomemodel organismnovelsynthetic biologytheoriestool
项目摘要
Project Summary
Biology is full of stunning examples of emergent behaviors – behaviors that arise from, but cannot be reduced
to, the interactions of the constituent parts that make up the system under consideration. These behaviors
span the full spectrum of length scales, from the emergence of distinct cell fates (e.g. neurons, muscle, etc.)
due to the interactions of genes within cells, to the formation of complex ecological communities arising from
the interactions of thousands of species. The overarching goal of my research is to develop new
conceptual, theoretical, and computational tools to model such emergent, system-level behaviors in
biology. To do so, we utilize an interdisciplinary approach that is grounded in Biological and Statistical
Physics, but that draws heavily from Machine Learning, Information Theory, and Theoretical Ecology. Our work
is unified and distinguished by our deep commitment to integrating theory with the vast amount of
biological data now being generated by experiment. An important goal of the proposed research is to find
common concepts and tools that transcend traditional biological sub-disciplines and model systems.
The proposed research pursues three distinct but conceptually interrelated research directions: (1)
identifying the ecological principles governing community assembly in microbial communities and developing
techniques for understanding function, diversity, and stability in microbiomes; (2) developing new mathematical
and computational tools for modeling information processing in biochemical networks, especially the gene
networks underlying cellular identity and the signaling networks that control collective behavior in the NIH
model organism Dictyostelium discoideum; and (3) understanding and developing new interpretable machine
learning techniques for systems and synthetic biology, with special attention paid to the unique challenges
posed by living systems with regards to data heterogeneity, biological interpretability, and potential sources of
bias. In addition to developing physics-based and machine learning-inspired models for diverse biological
phenomena, the proposed research will yield a series of practical and important computational tools and
algorithms which we will make publically available including: (1) our “Community Simulator” Python package
for simulating microbial communities based on the novel microbial consumer resource model framework we
have developed; (2) new machine learning and statistical algorithms for analyzing microbial communities and
gene networks; and (3) new computational tools for predicting the behavior of synthetic biological parts and
circuits in diverse contexts. These computational tools will allow scientists to leverage the power of modern
theory, computation, and advances in Deep Learning to tackle fundamental problems relevant to human
disease.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pankaj Mehta其他文献
Pankaj Mehta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pankaj Mehta', 18)}}的其他基金
Modeling Emergent Behaviors in Systems Biology: A Biological Physics Approach
系统生物学中的突发行为建模:生物物理方法
- 批准号:
9137947 - 财政年份:2016
- 资助金额:
$ 39.6万 - 项目类别:
MODELING EMERGENT BEHAVIORS IN SYSTEMS BIOLOGY: A BIOLOGICAL PHYSICS APPROACH
系统生物学中的突发行为建模:生物物理方法
- 批准号:
10330838 - 财政年份:2016
- 资助金额:
$ 39.6万 - 项目类别:
Modeling Emergent Behaviors in Systems Biology: A Biological Physics Approach
系统生物学中的突发行为建模:生物物理方法
- 批准号:
9317502 - 财政年份:2016
- 资助金额:
$ 39.6万 - 项目类别:
A quantitative study of cell-to-cell communication in bacteria
细菌细胞间通讯的定量研究
- 批准号:
8142022 - 财政年份:2008
- 资助金额:
$ 39.6万 - 项目类别:
A quantitative study of cell-to-cell communication in bacteria
细菌细胞间通讯的定量研究
- 批准号:
8334578 - 财政年份:2008
- 资助金额:
$ 39.6万 - 项目类别:
A quantitative study of cell-to-cell communication in bacteria
细菌细胞间通讯的定量研究
- 批准号:
7905836 - 财政年份:2008
- 资助金额:
$ 39.6万 - 项目类别:
A quantitative study of cell-to-cell communication in bacteria
细菌细胞间通讯的定量研究
- 批准号:
7513054 - 财政年份:2008
- 资助金额:
$ 39.6万 - 项目类别:
A quantitative study of cell-to-cell communication in bacteria
细菌细胞间通讯的定量研究
- 批准号:
7678027 - 财政年份:2008
- 资助金额:
$ 39.6万 - 项目类别:
相似国自然基金
多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Identifying risk earlier: Prenatal exposures, neurodevelopment, and infant sleep as pathways to toddler attention and behavior dysregulation
及早识别风险:产前暴露、神经发育和婴儿睡眠是导致幼儿注意力和行为失调的途径
- 批准号:
10752879 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Brain-behavior vulnerability to sleep loss in children: a dimensional study of attention and impulsivity
儿童睡眠不足的大脑行为脆弱性:注意力和冲动的维度研究
- 批准号:
10629272 - 财政年份:2021
- 资助金额:
$ 39.6万 - 项目类别:
Brain-behavior vulnerability to sleep loss in children: a dimensional study of attention and impulsivity
儿童睡眠不足的大脑行为脆弱性:注意力和冲动的维度研究
- 批准号:
10297377 - 财政年份:2021
- 资助金额:
$ 39.6万 - 项目类别:
Combining attention and metacognitive training to improve goal directed behavior in Veterans with TBI
结合注意力和元认知训练来改善患有 TBI 的退伍军人的目标导向行为
- 批准号:
9892500 - 财政年份:2020
- 资助金额:
$ 39.6万 - 项目类别:
Examining naturalistic social engagement: Using mobile eye-tracking to investigate individual differences and within-person variation in adolescent behavior, attention, and neural processing
检查自然主义的社会参与:使用移动眼动追踪来研究青少年行为、注意力和神经处理的个体差异和人内差异
- 批准号:
10115522 - 财政年份:2020
- 资助金额:
$ 39.6万 - 项目类别:
Nobel test batteries and therapies development for the time perception skill of the Attention-Deficit Hyperactivity Disorder children based on brain activities and behavior
诺贝尔奖测试电池和疗法开发基于大脑活动和行为的注意力缺陷多动障碍儿童的时间感知能力
- 批准号:
20K14058 - 财政年份:2020
- 资助金额:
$ 39.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examining naturalistic social engagement: Using mobile eye-tracking to investigate individual differences and within-person variation in adolescent behavior, attention, and neural processing
检查自然主义的社会参与:使用移动眼动追踪来研究青少年行为、注意力和神经处理的个体差异和人内差异
- 批准号:
10321277 - 财政年份:2020
- 资助金额:
$ 39.6万 - 项目类别:
Combining attention and metacognitive training to improve goal directed behavior in Veterans with TBI
结合注意力和元认知训练来改善患有 TBI 的退伍军人的目标导向行为
- 批准号:
10390281 - 财政年份:2020
- 资助金额:
$ 39.6万 - 项目类别:
Shyness, Attention and Anxiety: Bridging Physiology and Behavior in the Prediction of Social Outcomes
害羞、注意力和焦虑:在预测社会结果中连接生理学和行为
- 批准号:
518802-2018 - 财政年份:2020
- 资助金额:
$ 39.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Examining naturalistic social engagement: Using mobile eye-tracking to investigate individual differences and within-person variation in adolescent behavior, attention, and neural processing
检查自然主义的社会参与:使用移动眼动追踪来研究青少年行为、注意力和神经处理的个体差异和人内差异
- 批准号:
9911085 - 财政年份:2020
- 资助金额:
$ 39.6万 - 项目类别: