Charting the regulatory topography of the cell differentiation landscape with single-cell RNA-Seq.
使用单细胞 RNA-Seq 绘制细胞分化景观的调控拓扑图。
基本信息
- 批准号:8952190
- 负责人:
- 金额:$ 231.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-30 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAtherosclerosisBiological ModelsBiologyCell Differentiation processCell LineageCell TherapyCellsClassificationComputing MethodologiesCrohn&aposs diseaseCuesDataDendritic CellsDiseaseEnvironmentGene ExpressionGene Expression ProfileGene Expression ProfilingGenerationsGenesImmuneIndividualLocationMapsMeasurementMeasuresMesenchymal Stem CellsModelingMolecularMultiple SclerosisPathway interactionsPlasticsProcessRNARegulationRegulator GenesRegulatory PathwayResearchSeriesSourceStem cellsTimeTissuesVariantcell typefallshamstringintercellular communicationmonocytepublic health relevanceresponsetranscriptome sequencingtrend
项目摘要
DESCRIPTION (provided by applicant): A single stem cell generates a staggering array of highly specialized adult cell types in response to carefully regulated molecular cues from the surrounding tissue environment. However, recent evidence has challenged the classification of adult cells into discrete types. Immune cells, for example might be better described as inhabitants of a vast, continuous functional "landscape". In order to resolve whether either of these models are correct, we must be able to measure the complete gene expression profile of individual cells and observe them moving between different functional states during differentiation. This proposal aims to answer a fundamental question in biology: how continuous is the gene expression landscape during cell differentiation? I hypothesize that single-cell transcriptome sequencing (RNA-Seq) can be used to directly visualize the landscape traversed by differentiating cells, and that tracking the paths cells take across it will reveal the gene regulatory networks that govern cell differentiation. Many groups have tried to algorithmically infer gene regulatory networks from global transcriptome measurements obtained with microarrays or RNA-Seq. Unfortunately, computational methods for inferring regulatory networks from bulk cell expression data have likely been hamstrung by Simpson's paradox, which destroys the crucial source of variation that an algorithm needs to accurately reconstruct networks from expression data. Simpson's paradox describes how a trend present in two or more groups of individuals changes or disappears entirely when those groups are mixed together. In time series expression analyses of cell differentiation, Simpson's paradox often completely obscures changes in expression that occur during a transition from one state to the next, because each bulk measurement contains a mixture of both states. We recently developed a new algorithm called Monocle that constitutes a major breakthrough in the analysis of gene expression data because it overcomes Simpson's paradox using single- cell RNA-Seq. I will exploit the new sources of regulatory information that Monocle makes accessible to develop an algorithm that reconstructs both the transcriptional landscape and the active regulatory pathways governing cell differentiation. I will then analyze the monocyte-derived cell lineage as a model system for discerning whether cells fall into discrete states and dissecting the pathways regulating transitions between them. Recent analyses of monocyte differentiation have suggested that this lineage is far more plastic and less sharply defined than previously believed, and this plasticity is suspected to contribute to many common diseases, including atherosclerosis, Crohn's disease, and multiple sclerosis. To extend my approach to non-cell- autonomous regulation, I will investigate how mesenchymal stem cells block dendritic cell generation from monocytes through cell-cell signaling. If successful, the research proposed here will provide not just a map of pathways governing monocyte differentiation, but a general strategy useful for illuminating the gene regulatory networks that govern a wide array of dynamic processes in cells of nearly any tissue.
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Defining cell types and states with single-cell genomics.
- DOI:10.1101/gr.190595.115
- 发表时间:2015-10
- 期刊:
- 影响因子:7
- 作者:Trapnell C
- 通讯作者:Trapnell C
Single-Cell Multi-omics: An Engine for New Quantitative Models of Gene Regulation.
- DOI:10.1016/j.tig.2018.06.001
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Packer J;Trapnell C
- 通讯作者:Trapnell C
Single-cell mRNA quantification and differential analysis with Census.
- DOI:10.1038/nmeth.4150
- 发表时间:2017-03
- 期刊:
- 影响因子:48
- 作者:Qiu X;Hill A;Packer J;Lin D;Ma YA;Trapnell C
- 通讯作者:Trapnell C
Single-cell transcriptome sequencing: recent advances and remaining challenges.
- DOI:10.12688/f1000research.7223.1
- 发表时间:2016-01-01
- 期刊:
- 影响因子:0
- 作者:Liu, Serena;Trapnell, Cole
- 通讯作者:Trapnell, Cole
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Colston Trapnell其他文献
Bruce Colston Trapnell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Colston Trapnell', 18)}}的其他基金
Pulmonary Macrophage Transplantation for Pulmonary Alveolar Proteinosis
肺巨噬细胞移植治疗肺泡蛋白沉积症
- 批准号:
10213109 - 财政年份:2014
- 资助金额:
$ 231.75万 - 项目类别:
Pulmonary Macrophage Transplantation for Pulmonary Alveolar Proteinosis
肺巨噬细胞移植治疗肺泡蛋白沉积症
- 批准号:
9982374 - 财政年份:2014
- 资助金额:
$ 231.75万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 231.75万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 231.75万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 231.75万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 231.75万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 231.75万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 231.75万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 231.75万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 231.75万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 231.75万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 231.75万 - 项目类别:
Continuing Grant