High Performance Automated System for Analysis of Fast Cardiac SPECT
用于快速心脏 SPECT 分析的高性能自动化系统
基本信息
- 批准号:8906912
- 负责人:
- 金额:$ 68.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-18 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsBloodBlood flowCardiologyCessation of lifeClinicalClinical DataComputer SystemsComputersCoronary ArteriosclerosisCoronary heart diseaseDataDetectionDiagnosisDiagnosticDiseaseDoseGenerationsHealthHealthcareHeart DiseasesImageImaging TechniquesInterventionLeadLocationMachine LearningMapsMyocardialMyocardial InfarctionMyocardial perfusionMyocardiumNuclearPatient SelectionPatientsPerformancePerfusionPhotonsPhysiciansProbabilityPublic HealthRadiationResearchResearch PersonnelRestRiskSavingsScanningStressStress TestsSystemSystems AnalysisTrainingUnited StatesVisualWorkcardiac single photon emission computed tomographyexperienceheart imagingimage processingimprovednovelnovel strategiesprognosticprogramsquantitative imagingtomographytool
项目摘要
DESCRIPTION (provided by applicant): Coronary artery disease remains a major public health problem worldwide. It causes approximately 1 of every 6 deaths in the United States. Imaging of myocardial perfusion (delivery of blood to the heart muscle) by myocardial perfusion single photon emission tomography (MPS) allows physicians to detect disease before a heart attack, and predict risk in millions of patients annually. This is currently limited by the need fo visual interpretation, which is highly variable and depends on the physician's experience. The long-term objective of this program is to improve the interpretation of this widely used heart imaging technique-achieving higher accuracy for disease detection than it is possible by the best attainable visual analysis. This proposal builds on our prior work in conventional myocardial MPS, and focuses on fast, low-radiation MPS imaging (fast-MPS) obtained by new high-efficiency scanners. Specifically, we aim to: 1) develop new image processing algorithms for a fully automated analysis of fast-MPS. The algorithms will include better heart muscle detection by training with correlated anatomical data and a novel approach for mapping the probability of abnormal perfusion for each location of the heart muscle; 2) enhance the diagnosis of heart disease from fast-MPS by machine- learning algorithms that integrate clinical data, stress test parameters, and quantitative image features; 3) demonstrate the clinical utility of the new algorithms applied to automatic canceling of the rest portion of the MPS scan, when not needed. The new system will be more accurate than the clinical expert analysis in the detection of obstructive coronary disease. By immediately indicating whether a stress scan is normal, the system will allow for the automatic cancellation of the rest imaging portion when it is not needed (estimated in over 60% of all MPS studies). Our research will demonstrate that the computer decision regarding rest-scan cancellation is safe for the patient, both from a diagnostic and prognostic standpoint. This will lead to a wide adoption of low-dose stress-only imaging for MPS studies, which would reduce the amount of radiation that patients are exposed to, and allow for significant healthcare savings. It will additionally lead to a paradigm shift in the practice of nuclear cardiology, which will ultimately result in better selection of patients who need intervention, and reduce the number of deaths due coronary artery disease.
描述(由申请人提供):冠状动脉疾病仍然是全球主要的公共卫生问题。在美国,每6例死亡中就有1例是由它引起的。通过心肌灌注单光子发射断层扫描(MPS)对心肌灌注(将血液输送到心肌)进行成像,使医生能够在心脏病发作前检测疾病,并预测每年数百万患者的风险。目前,这是有限的需要视觉解释,这是高度可变的,并取决于医生的经验。该计划的长期目标是改善这种广泛使用的心脏成像技术的解释,实现比最佳视觉分析更高的疾病检测准确性。这项建议建立在我们以前的工作,在传统的心肌MPS,并专注于快速,低辐射MPS成像(快速MPS)获得新的高效扫描仪。具体而言,我们的目标是:1)开发新的图像处理算法,用于快速MPS的全自动分析。这些算法将包括通过使用相关解剖数据进行训练来更好地检测心肌,以及用于映射心肌每个位置的异常灌注概率的新方法; 2)通过整合临床数据、压力测试参数和定量图像特征的机器学习算法来增强对来自快速MPS的心脏病的诊断; 3)证明在不需要时自动取消MPS扫描其余部分的新算法的临床效用。新系统在检测阻塞性冠状动脉疾病方面将比临床专家分析更准确。通过立即指示应力扫描是否正常,系统将允许在不需要时自动取消其余成像部分(估计超过60%的MPS研究)。我们的研究将证明,从诊断和预后的角度来看,计算机决定取消休息扫描对病人是安全的。这将导致MPS研究广泛采用低剂量应力成像,这将减少患者暴露的辐射量,并节省大量医疗费用。它还将导致核心脏病学实践的范式转变,最终将导致更好地选择需要干预的患者,并减少因冠状动脉疾病死亡的人数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Piotr J Slomka其他文献
Coronary inflammation and atherosclerosis by CCTA in young adults (aged 18-45)
冠状动脉炎症和动脉粥样硬化通过 CCTA 在年轻成年人中(年龄 18-45 岁)
- DOI:
10.1016/j.ajpc.2025.101010 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:5.900
- 作者:
Annalisa Filtz;Daniel Lorenzatti;Henry A Dwaah;Carlos Espiche;Santiago F Galgani;Jake T Gilman;Alexandrina Danilov;Andrea Scotti;Piotr J Slomka;Daniel S Berman;Salim S Virani;Mario J Garcia;Khurram Nasir;Leslee J. Shaw;Ron Blankstein;Michael D Shapiro;Damini Dey;Leandro Slipczuk - 通讯作者:
Leandro Slipczuk
AI-based volumetric six-tissue body composition quantification from CT cardiac attenuation scans for mortality prediction: a multicentre study
基于人工智能的从 CT 心脏衰减扫描中进行六组织体成分定量以预测死亡率:一项多中心研究
- DOI:
10.1016/j.landig.2025.02.002 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:24.100
- 作者:
Jirong Yi;Anna M Marcinkiewicz;Aakash Shanbhag;Robert J H Miller;Jolien Geers;Wenhao Zhang;Aditya Killekar;Nipun Manral;Mark Lemley;Mikolaj Buchwald;Jacek Kwiecinski;Jianhang Zhou;Paul B Kavanagh;Joanna X Liang;Valerie Builoff;Terrence D Ruddy;Andrew J Einstein;Attila Feher;Edward J Miller;Albert J Sinusas;Piotr J Slomka - 通讯作者:
Piotr J Slomka
Piotr J Slomka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Piotr J Slomka', 18)}}的其他基金
Patient-specific Outcome Prediction from Cardiovascular Multimodality Imaging by Artificial Intelligence
人工智能心血管多模态成像的患者特异性结果预测
- 批准号:
10353281 - 财政年份:2022
- 资助金额:
$ 68.5万 - 项目类别:
Patient-specific Outcome Prediction from Cardiovascular Multimodality Imaging by Artificial Intelligence
人工智能心血管多模态成像的患者特异性结果预测
- 批准号:
10601119 - 财政年份:2022
- 资助金额:
$ 68.5万 - 项目类别:
Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography
利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析
- 批准号:
9755492 - 财政年份:2017
- 资助金额:
$ 68.5万 - 项目类别:
Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography
利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析
- 批准号:
9539728 - 财政年份:2017
- 资助金额:
$ 68.5万 - 项目类别:
Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography
利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析
- 批准号:
10015326 - 财政年份:2017
- 资助金额:
$ 68.5万 - 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
- 批准号:
7841294 - 财政年份:2009
- 资助金额:
$ 68.5万 - 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
- 批准号:
8089330 - 财政年份:2007
- 资助金额:
$ 68.5万 - 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
- 批准号:
7883401 - 财政年份:2007
- 资助金额:
$ 68.5万 - 项目类别:
Quantitative Prediction of Disease and Outcomes from Next Generation SPECT and CT
通过下一代 SPECT 和 CT 定量预测疾病和结果
- 批准号:
9888240 - 财政年份:2007
- 资助金额:
$ 68.5万 - 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
- 批准号:
7636756 - 财政年份:2007
- 资助金额:
$ 68.5万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 68.5万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 68.5万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 68.5万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 68.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 68.5万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 68.5万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 68.5万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 68.5万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 68.5万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 68.5万 - 项目类别:
Continuing Grant