Quantitative Prediction of Disease and Outcomes from Next Generation SPECT and CT
通过下一代 SPECT 和 CT 定量预测疾病和结果
基本信息
- 批准号:9888240
- 负责人:
- 金额:$ 80.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-18 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsArtificial IntelligenceAutomobile DrivingBiological MarkersBloodBlood flowCalciumCardiovascular systemCatheterizationCessation of lifeClinicClinicalClinical DataCoronary ArteriosclerosisCoronary Artery BypassCountryCox ModelsCox Proportional Hazards ModelsDataData SetDepositionDetectionDiagnosisDiagnosticDiseaseDisease OutcomeEventGrantHumanImageImage AnalysisImage EnhancementInjectionsInternationalJointsMapsMeasuresMethodsModelingMyocardialMyocardial InfarctionMyocardial perfusionMyocardiumOutcomePatient imagingPatientsPerceptionPerformancePerfusionPhotonsPhysiciansPositron-Emission TomographyPsyche structurePublic HealthReaderRecommendationRegistriesRelative RisksReportingResearchResearch PersonnelResourcesRestRiskRisk AssessmentRisk EstimateRisk FactorsScanningSiteStatistical ModelsStentsStressTechniquesTechnologyTestingTimeTrainingUnited StatesVisualWorkX-Ray Computed Tomographyadverse event riskattenuationcardiovascular risk factorclinically relevantdeep learningexperienceimprovedimproved outcomemultidisciplinarynext generationnon-invasive imagingnovelperfusion imagingpersonalized decisionprognosticradiotracerrelating to nervous systemsingle photon emission computed tomographysupport toolstime usetomographytool
项目摘要
PROJECT SUMMARY
Quantitative Prediction of Disease and Outcomes from Next Generation SPECT and CT
Coronary artery disease remains a major public health problem worldwide. It causes approximately 1 of every 6
deaths in the United States. Imaging of myocardial perfusion (delivery of blood to the heart muscle) by myocardial
perfusion single photon emission tomography (MPS) allows physicians to detect disease before heart attacks
occur and is currently used to predict risk in millions of patients annually.
Under the current grant, we have established a unique collaborative multicenter registry including over 23,000
imaging datasets (REFINE SPECT) with both prognostic (major adverse cardiovascular events) and diagnostic
(invasive catheterization) outcomes. Using this registry, we have demonstrated that a combination of MPS image
analysis and artificial intelligence (AI) tools achieved superior predictive performance compared to visual
assessment by experienced readers or current state-of-the-art quantitative techniques. In the renewal, we plan
to expand REFINE SPECT with now-available enhanced datasets (adding CT and myocardial blood flow
information) and leverage latest AI advances to provide a personalized decision support tool for patient-specific
cardiovascular risk assessment and estimation of benefit from revascularization following MPS.
The overall aim is to optimize the clinical capabilities of MPS in risk prediction and treatment guidance by
integrating all available imaging and clinical data with state-of-the-art AI methods. For this work, we propose the
following 3 specific aims: (1) To expand and enhance our REFINE SPECT registry including CT and MPS flow
data, (2) To develop fully automated techniques for all MPS and CT image analysis, (3) To apply explainable
deep learning time-to-event AI models for optimal prediction of MACE and benefit from revascularization from
all image and clinical data.
This work will result in an immediately deployable clinical tool, which will optimally predict risk of adverse events
and establish the relative benefits from specific therapies, beyond what is possible by subjective visual analysis
and mental integration of all imaging (MPS, CT, flow), and clinical data by physicians. Such quantitative
integrative methods are not yet available, leaving the current practice for assessing risk and recommending
therapy highly subjective. The precise quantitative results will be presented to clinicians in easy to understand
terms (e.g., % risk per year, or relative risk of one therapy vs. the alternative) for a specific patient. Additionally,
our methods to make AI conclusions more tangible will improve adoption of this technology. All results will be
derived fully automatically thus eliminating any variability. Our approach will fit into current MPS practice and will
be immediately translatable to clinics worldwide. Most importantly, this research will allow patients to benefit
from increased precision and accuracy in risk assessment, thereby optimizing the use of imaging in guiding
patient management decisions and ultimately improving outcomes.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Piotr J Slomka其他文献
Coronary inflammation and atherosclerosis by CCTA in young adults (aged 18-45)
冠状动脉炎症和动脉粥样硬化通过 CCTA 在年轻成年人中(年龄 18-45 岁)
- DOI:
10.1016/j.ajpc.2025.101010 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:5.900
- 作者:
Annalisa Filtz;Daniel Lorenzatti;Henry A Dwaah;Carlos Espiche;Santiago F Galgani;Jake T Gilman;Alexandrina Danilov;Andrea Scotti;Piotr J Slomka;Daniel S Berman;Salim S Virani;Mario J Garcia;Khurram Nasir;Leslee J. Shaw;Ron Blankstein;Michael D Shapiro;Damini Dey;Leandro Slipczuk - 通讯作者:
Leandro Slipczuk
AI-based volumetric six-tissue body composition quantification from CT cardiac attenuation scans for mortality prediction: a multicentre study
基于人工智能的从 CT 心脏衰减扫描中进行六组织体成分定量以预测死亡率:一项多中心研究
- DOI:
10.1016/j.landig.2025.02.002 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:24.100
- 作者:
Jirong Yi;Anna M Marcinkiewicz;Aakash Shanbhag;Robert J H Miller;Jolien Geers;Wenhao Zhang;Aditya Killekar;Nipun Manral;Mark Lemley;Mikolaj Buchwald;Jacek Kwiecinski;Jianhang Zhou;Paul B Kavanagh;Joanna X Liang;Valerie Builoff;Terrence D Ruddy;Andrew J Einstein;Attila Feher;Edward J Miller;Albert J Sinusas;Piotr J Slomka - 通讯作者:
Piotr J Slomka
Piotr J Slomka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Piotr J Slomka', 18)}}的其他基金
Patient-specific Outcome Prediction from Cardiovascular Multimodality Imaging by Artificial Intelligence
人工智能心血管多模态成像的患者特异性结果预测
- 批准号:
10353281 - 财政年份:2022
- 资助金额:
$ 80.81万 - 项目类别:
Patient-specific Outcome Prediction from Cardiovascular Multimodality Imaging by Artificial Intelligence
人工智能心血管多模态成像的患者特异性结果预测
- 批准号:
10601119 - 财政年份:2022
- 资助金额:
$ 80.81万 - 项目类别:
Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography
利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析
- 批准号:
9755492 - 财政年份:2017
- 资助金额:
$ 80.81万 - 项目类别:
Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography
利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析
- 批准号:
9539728 - 财政年份:2017
- 资助金额:
$ 80.81万 - 项目类别:
Integrated analysis of coronary anatomy and biology with 18F-fluoride PET and CT angiography
利用 18F-氟化物 PET 和 CT 血管造影对冠状动脉解剖学和生物学进行综合分析
- 批准号:
10015326 - 财政年份:2017
- 资助金额:
$ 80.81万 - 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
- 批准号:
7841294 - 财政年份:2009
- 资助金额:
$ 80.81万 - 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
- 批准号:
8089330 - 财政年份:2007
- 资助金额:
$ 80.81万 - 项目类别:
High Performance Automated System for Analysis of Fast Cardiac SPECT
用于快速心脏 SPECT 分析的高性能自动化系统
- 批准号:
8906912 - 财政年份:2007
- 资助金额:
$ 80.81万 - 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
- 批准号:
7883401 - 财政年份:2007
- 资助金额:
$ 80.81万 - 项目类别:
High-Performance Automated System For Analysis of Cardiac SPECT
用于心脏 SPECT 分析的高性能自动化系统
- 批准号:
7636756 - 财政年份:2007
- 资助金额:
$ 80.81万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 80.81万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 80.81万 - 项目类别:
Linkage Projects
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 80.81万 - 项目类别:
Standard Grant
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 80.81万 - 项目类别:
Studentship
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 80.81万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 80.81万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 80.81万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 80.81万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 80.81万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 80.81万 - 项目类别: