Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
基本信息
- 批准号:9132190
- 负责人:
- 金额:$ 62.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic SoftwareAlgorithmsArchitectureBiologicalBiological MarkersCancer BiologyClinicalClinical DataClinical TrialsCommunitiesComputer softwareComputer-Assisted Image AnalysisDataData SetDevelopmentEastern Cooperative Oncology GroupEvaluationFailureFollicular LymphomaFundingGene ExpressionGenerationsGenomicsHealthHumanImageInvestigationJavaLanguageLesionLibrariesLinkLocationMachine LearningMalignant NeoplasmsMeasurementMetabolicModalityMolecularMulti-Institutional Clinical TrialNon-Small-Cell Lung CarcinomaOutcomePatient-Focused OutcomesPharmaceutical PreparationsPhenotypePlug-inPositron-Emission TomographyProgression-Free SurvivalsPythonsRNA SequencesRadiogenomicsResearchResearch InfrastructureResearch PersonnelResourcesRoleScienceShapesSpecific qualifier valueSystemTherapeuticTimeTissue SurvivalTissuesTumor Burdenbasecancer genomicscancer imagingcancer subtypescancer therapycloud baseddisorder subtypeimage archival systemimage processingimaging biomarkerimaging modalityimprovedinterestnovelnovel therapeuticsoncologyopen sourcepredict clinical outcomepredictive modelingquantitative imagingrepositoryresponsestatisticssuccesssurvival predictiontooltreatment responsetumorvectorweb based interface
项目摘要
DESCRIPTION (provided by applicant): The Quantitative Imaging Network (QIN) is a consortium of centers developing quantitative image features, which are proving to be valuable biomarkers of the underlying cancer biology and that can be used for assessing response to treatment and predicting clinical outcome. It is now important to discover the best quantitative imaging features for detection of response to therapeutics, to identify subtypes of cancer, and to correlate with cancer genomics. However, progress is thwarted by the lack of shared software algorithms, architectures, and resources required to compute, compare, evaluate, and disseminate these quantitative imaging features within the QIN and the broader community. We propose to develop the Quantitative Imaging Feature Pipeline (QIFP), a cloud-based, open source platform that will give researchers free access to these capabilities and hasten the introduction of quantitative image biomarkers into single- and multi-center clinical trials. The QIFP will facilitate assessment of the incremental value of new vs. existing image feature sets. It
will also allow researchers to add their own algorithms to compute novel quantitative image features in their own studies and to disseminate them to the greater research community. To accomplish this: (1) We will create an expandable library of quantitative imaging feature algorithms capable of comprehensive characterization of the imaging phenotype of cancer. It will support a broad set of imaging modalities and algorithms implemented in a variety of languages, including algorithms that provide volumetric and time-varying assessment of lesion size, shape, edge sharpness, and pixel statistics. (2) We will build a cloud-based software architecture for creating, executing, and comparing quantitative image feature-generating pipelines, including algorithms in the library and/or those supplied by QIN or other researchers as plug-ins. QIFP will also have (a) a machine learning engine that lets users specify a dependent variable (e.g., progression-free survival) that the quantitative image features can used to predict, and (b) an evaluation engine that compares the utility of particular features for predicting the dependent variable. (3) We will assess the QIFP in four ways: (a) by its ability to recapitulate the role of known biomarkers in a related clinical trial, (b) by comparing linear measurement, metabolic tumor burden and novel combinations of the features in our library for predicting one-year progression-free survival, (c) by merging imaging features with known host-, drug- and tumor-based follicular lymphoma biomarkers in order to develop the most robust and integrative predictive model for patient outcomes, and (d) by using the QIFP to combine and to evaluate image feature algorithms developed by another QIN team and our own NCI- funded team in the study of radiogenomics of non-small cell lung cancer. The QIFP will fill a substantial gap in the science currently being carried out in the QIN and in the community by providing the tools and infrastructure to assess the value of novel quantitative imaging features of cancer, and will thereby accelerate incorporating new imaging biomarkers into single and multi-center clinical trials and into oncology practice.
描述(由申请人提供):定量成像网络(QIN)是一个开发定量图像特征的中心联盟,这些特征被证明是潜在癌症生物学的有价值的生物标志物,可用于评估治疗反应和预测临床结果。现在重要的是发现用于检测治疗反应、识别癌症亚型以及与癌症基因组学相关的最佳定量成像特征。然而,由于缺乏在 QIN 和更广泛的社区内计算、比较、评估和传播这些定量成像特征所需的共享软件算法、架构和资源,进展受到阻碍。我们建议开发定量成像特征管道(QIFP),这是一个基于云的开源平台,使研究人员可以免费使用这些功能,并加快将定量图像生物标志物引入单中心和多中心临床试验。 QIFP 将有助于评估新图像特征集与现有图像特征集的增量价值。它
还将允许研究人员添加自己的算法来计算自己研究中新颖的定量图像特征,并将其传播到更大的研究社区。为了实现这一目标:(1)我们将创建一个可扩展的定量成像特征算法库,能够全面表征癌症的成像表型。它将支持以多种语言实现的广泛成像模式和算法,包括提供病变大小、形状、边缘锐度和像素统计的体积和时变评估的算法。 (2) 我们将构建一个基于云的软件架构,用于创建、执行和比较定量图像特征生成管道,包括库中的算法和/或 QIN 或其他研究人员作为插件提供的算法。 QIFP 还将拥有 (a) 一个机器学习引擎,让用户指定可用于预测定量图像特征的因变量(例如无进展生存),以及 (b) 一个评估引擎,用于比较特定特征在预测因变量方面的效用。 (3) 我们将以四种方式评估 QIFP:(a) 通过其在相关临床试验中重述已知生物标志物的作用的能力,(b) 通过比较线性测量、代谢肿瘤负荷和我们库中用于预测一年无进展生存期的新特征组合,(c) 通过将成像特征与已知的基于宿主、药物和肿瘤的滤泡性淋巴瘤生物标志物合并,以开发 对患者结果最稳健和综合的预测模型,以及 (d) 通过使用 QIFP 来结合和评估另一个 QIN 团队和我们自己的 NCI 资助的非小细胞肺癌放射基因组学研究团队开发的图像特征算法。 QIFP 将通过提供工具和基础设施来评估癌症新型定量成像特征的价值,从而填补 QIN 和社区目前正在开展的科学的重大空白,从而加速将新的成像生物标志物纳入单中心和多中心临床试验以及肿瘤学实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANDY A. NAPEL其他文献
SANDY A. NAPEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANDY A. NAPEL', 18)}}的其他基金
Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
- 批准号:
9753130 - 财政年份:2015
- 资助金额:
$ 62.69万 - 项目类别:
Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
- 批准号:
9324146 - 财政年份:2015
- 资助金额:
$ 62.69万 - 项目类别:
Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
- 批准号:
8960049 - 财政年份:2015
- 资助金额:
$ 62.69万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8889206 - 财政年份:2011
- 资助金额:
$ 62.69万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8693964 - 财政年份:2011
- 资助金额:
$ 62.69万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8332267 - 财政年份:2011
- 资助金额:
$ 62.69万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8513277 - 财政年份:2011
- 资助金额:
$ 62.69万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8153431 - 财政年份:2011
- 资助金额:
$ 62.69万 - 项目类别:
Improving Radiologist Detection of Lung Nodules with CAD
使用 CAD 改进放射科医生对肺结节的检测
- 批准号:
7367836 - 财政年份:2005
- 资助金额:
$ 62.69万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 62.69万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 62.69万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 62.69万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 62.69万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 62.69万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 62.69万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 62.69万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 62.69万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 62.69万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 62.69万 - 项目类别:
Standard Grant














{{item.name}}会员




