Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
基本信息
- 批准号:9753130
- 负责人:
- 金额:$ 56.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic SoftwareAlgorithmsArchitectureBiologicalBiological MarkersCancer BiologyClinical DataClinical TrialsCommunitiesComputational algorithmComputer softwareDataData SetDevelopmentDigital Imaging and Communications in MedicineEastern Cooperative Oncology GroupEvaluationFailureFollicular LymphomaFundingGene ExpressionGenerationsGenomicsHealthHumanImageInfrastructureInvestigationJavaLanguageLesionLibrariesLinkLocationMachine LearningMalignant NeoplasmsMeasurementMetabolicModalityModernizationMolecularMulti-Institutional Clinical TrialNon-Small-Cell Lung CarcinomaOutcomePatient-Focused OutcomesPharmaceutical PreparationsPhenotypePlug-inPositron-Emission TomographyPrediction of Response to TherapyPrivatizationProgression-Free SurvivalsPythonsRNA SequencesRadiogenomicsResearchResearch PersonnelResourcesRoleScienceShapesSpecific qualifier valueSystemTherapeuticTimeTissuesTumor Burdenbasecancer biomarkerscancer genomicscancer imagingcancer subtypescancer therapyclinical predictorscloud baseddisorder subtypefeature detectionimage archival systemimage processingimaging biomarkerimaging modalityimprovedinterestnovelnovel therapeuticsoncologyopen sourcepredict clinical outcomepredictive modelingpublic health relevancequantitative imagingrepositoryresponsespecific biomarkersstatisticssuccesssurvival predictiontooltreatment responsetumorvectorweb based interface
项目摘要
DESCRIPTION (provided by applicant): The Quantitative Imaging Network (QIN) is a consortium of centers developing quantitative image features, which are proving to be valuable biomarkers of the underlying cancer biology and that can be used for assessing response to treatment and predicting clinical outcome. It is now important to discover the best quantitative imaging features for detection of response to therapeutics, to identify subtypes of cancer, and to correlate with cancer genomics. However, progress is thwarted by the lack of shared software algorithms, architectures, and resources required to compute, compare, evaluate, and disseminate these quantitative imaging features within the QIN and the broader community. We propose to develop the Quantitative Imaging Feature Pipeline (QIFP), a cloud-based, open source platform that will give researchers free access to these capabilities and hasten the introduction of quantitative image biomarkers into single- and multi-center clinical trials. The QIFP will facilitate assessment of the incremental value of new vs. existing image feature sets. It
will also allow researchers to add their own algorithms to compute novel quantitative image features in their own studies and to disseminate them to the greater research community. To accomplish this: (1) We will create an expandable library of quantitative imaging feature algorithms capable of comprehensive characterization of the imaging phenotype of cancer. It will support a broad set of imaging modalities and algorithms implemented in a variety of languages, including algorithms that provide volumetric and time-varying assessment of lesion size, shape, edge sharpness, and pixel statistics. (2) We will build a cloud-based software architecture for creating, executing, and comparing quantitative image feature-generating pipelines, including algorithms in the library and/or those supplied by QIN or other researchers as plug-ins. QIFP will also have (a) a machine learning engine that lets users specify a dependent variable (e.g., progression-free survival) that the quantitative image features can used to predict, and (b) an evaluation engine that compares the utility of particular features for predicting the dependent variable. (3) We will assess the QIFP in four ways: (a) by its ability to recapitulate the role of known biomarkers in a related clinical trial, (b) by comparing linear measurement, metabolic tumor burden and novel combinations of the features in our library for predicting one-year progression-free survival, (c) by merging imaging features with known host-, drug- and tumor-based follicular lymphoma biomarkers in order to develop the most robust and integrative predictive model for patient outcomes, and (d) by using the QIFP to combine and to evaluate image feature algorithms developed by another QIN team and our own NCI- funded team in the study of radiogenomics of non-small cell lung cancer. The QIFP will fill a substantial gap in the science currently being carried out in the QIN and in the community by providing the tools and infrastructure to assess the value of novel quantitative imaging features of cancer, and will thereby accelerate incorporating new imaging biomarkers into single and multi-center clinical trials and into oncology practice.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANDY A. NAPEL其他文献
SANDY A. NAPEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANDY A. NAPEL', 18)}}的其他基金
Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
- 批准号:
9324146 - 财政年份:2015
- 资助金额:
$ 56.75万 - 项目类别:
Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
- 批准号:
9132190 - 财政年份:2015
- 资助金额:
$ 56.75万 - 项目类别:
Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
- 批准号:
8960049 - 财政年份:2015
- 资助金额:
$ 56.75万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8889206 - 财政年份:2011
- 资助金额:
$ 56.75万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8693964 - 财政年份:2011
- 资助金额:
$ 56.75万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8332267 - 财政年份:2011
- 资助金额:
$ 56.75万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8513277 - 财政年份:2011
- 资助金额:
$ 56.75万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8153431 - 财政年份:2011
- 资助金额:
$ 56.75万 - 项目类别:
Improving Radiologist Detection of Lung Nodules with CAD
使用 CAD 改进放射科医生对肺结节的检测
- 批准号:
7367836 - 财政年份:2005
- 资助金额:
$ 56.75万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 56.75万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 56.75万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 56.75万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 56.75万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 56.75万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 56.75万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 56.75万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 56.75万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 56.75万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 56.75万 - 项目类别:
Standard Grant














{{item.name}}会员




