Database and software development for protein-nucleic acid structure predication

蛋白质核酸结构预测的数据库和软件开发

基本信息

  • 批准号:
    8817202
  • 负责人:
  • 金额:
    $ 28.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-02-01 至 2019-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Our long-term goal is protein-nucleic acid (NA, namely RNA and DNA) structure prediction, for the ultimate goal of rational drug design. Protein-RNA interactions play critical roles in RNA processing, gene expression and viral replication. Screen of compounds that inhibit or promote specific protein-RNA binding and design of short RNA sequences (RNA aptamers) that bind to cancer cell-surface antigens or other disease-associated protein targets have profound applications in drug development. Protein-DNA interactions are essential for transcription, DNA damage repair and apoptosis. Reliable predictive model for protein-NA structures will thus have a far-reaching impact on understanding the fundamental biological processes and on rational design of therapeutic interventions. However, despite the widespread biomedical significance of the problem, computational studies on protein-RNA structure prediction remain very limited. One of the key bottlenecks is lack of large training and testing data sets of experimentally determined protein-RNA complex structures. In this project, we propose to establish a platform service for the protein-RNA structure prediction community by constructing rigorous benchmarking data sets and for the first time, flexible decoys for algorithm development (including parameter training), assessment and systematic improvement. We also propose to develop a new statistical scoring framework for predicting protein-RNA structures by extracting the molecular interaction information from the benchmarks and by accounting for molecular flexibility. The datasets including flexible decoys and the software will be freely distributed to the academic community. The methods will be generalized to protein-DNA structure predictions. We will also test the predictive power of our algorithms by predicting RNA aptamer binding to prostate-specific membrane antigen (PSMA). Our prediction and rational design of PSMA-inhibiting RNA aptamers will be tested thoroughly through experimental assays. Our ability to predict and design RNA aptamers that bind to cancer cell-surface antigens such as PSMA with high affinity and specificity will have great potential for targeted cancer diagnostics and therapy.
描述(申请人提供):我们的长期目标是蛋白质-核酸(NA,即RNA和DNA)结构预测,以实现合理药物设计的最终目标。蛋白质-RNA相互作用在RNA加工、基因表达和病毒复制中起着关键作用。筛选抑制或促进特定蛋白质-RNA结合的化合物和设计与癌细胞表面抗原或其他疾病相关蛋白质靶标结合的短RNA序列(RNA适配子)在药物开发中具有深远的应用价值。蛋白质-DNA相互作用对于转录、DNA损伤修复和细胞凋亡是必不可少的。因此,可靠的蛋白质-NA结构预测模型将对理解基本的生物学过程和合理设计治疗干预措施产生深远的影响。然而,尽管这一问题具有广泛的生物医学意义,但对蛋白质-RNA结构预测的计算研究仍然非常有限。关键的瓶颈之一是缺乏实验确定的蛋白质-RNA复杂结构的大量训练和测试数据集。在这个项目中,我们建议通过构建严格的基准数据集和首次为算法开发(包括参数训练)、评估和系统改进提供灵活的诱饵,为蛋白质-RNA结构预测社区建立一个平台服务。我们还建议开发一个新的统计评分框架,通过从基准中提取分子相互作用信息并考虑分子灵活性来预测蛋白质-RNA结构。包括灵活诱饵和软件在内的数据集将免费分发给学术界。这些方法将被推广到蛋白质-DNA结构预测。我们还将通过预测RNA适配子与前列腺特异性膜抗原(PSMA)的结合来测试我们算法的预测能力。我们对PSMA抑制RNA适配子的预测和合理设计将通过实验分析得到彻底的检验。我们能够高亲和力和高特异性地预测和设计与癌细胞表面抗原如PSMA结合的RNA适配子,这将在靶向癌症诊断和治疗方面具有巨大的潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XIAOQIN ZOU其他文献

XIAOQIN ZOU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XIAOQIN ZOU', 18)}}的其他基金

Structure prediction and in silico screening of protein-peptide interactions
蛋白质-肽相互作用的结构预测和计算机筛选
  • 批准号:
    10613885
  • 财政年份:
    2020
  • 资助金额:
    $ 28.24万
  • 项目类别:
Structure prediction and in silico screening of protein-peptide interactions
蛋白质-肽相互作用的结构预测和计算机筛选
  • 批准号:
    10394298
  • 财政年份:
    2020
  • 资助金额:
    $ 28.24万
  • 项目类别:
Structure prediction and in silico screening of protein-peptide interactions
蛋白质-肽相互作用的结构预测和计算机筛选
  • 批准号:
    10605034
  • 财政年份:
    2020
  • 资助金额:
    $ 28.24万
  • 项目类别:
Database and software development for protein-nucleic acid structure predication
蛋白质核酸结构预测的数据库和软件开发
  • 批准号:
    8994737
  • 财政年份:
    2015
  • 资助金额:
    $ 28.24万
  • 项目类别:
Database and software development for protein-nucleic acid structure predication
蛋白质核酸结构预测的数据库和软件开发
  • 批准号:
    9188820
  • 财政年份:
    2015
  • 资助金额:
    $ 28.24万
  • 项目类别:
A new scoring framework for selecting structural models
用于选择结构模型的新评分框架
  • 批准号:
    7708263
  • 财政年份:
    2009
  • 资助金额:
    $ 28.24万
  • 项目类别:
A new scoring framework for selecting structural models
用于选择结构模型的新评分框架
  • 批准号:
    7943077
  • 财政年份:
    2009
  • 资助金额:
    $ 28.24万
  • 项目类别:
Quantitative Structure & Function of ABC Transporters
数量结构
  • 批准号:
    6885774
  • 财政年份:
    2002
  • 资助金额:
    $ 28.24万
  • 项目类别:
Quantitative Structure & Function of ABC Transporters
数量结构
  • 批准号:
    6465513
  • 财政年份:
    2002
  • 资助金额:
    $ 28.24万
  • 项目类别:
Quantitative Structure & Function of ABC Transporters
数量结构
  • 批准号:
    7058228
  • 财政年份:
    2002
  • 资助金额:
    $ 28.24万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 28.24万
  • 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 28.24万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 28.24万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了