Structure prediction and in silico screening of protein-peptide interactions
蛋白质-肽相互作用的结构预测和计算机筛选
基本信息
- 批准号:10613885
- 负责人:
- 金额:$ 38.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Antibiotic ResistanceAttentionBiochemistryBioinformaticsBiological ProcessCell physiologyCollaborationsCommunitiesComplementComplexComputational algorithmComputer ModelsComputer softwareCost SavingsDiseaseFreedomGoalsImmune responseInvestigationLigandsMedicineMethodsMicrobiologyMolecular BiologyNMR SpectroscopyPeptide LibraryPeptidesPhage DisplayProteinsSignal TransductionStructureTechnologyTherapeuticTherapeutic InterventionTimeTranscriptional RegulationX-Ray Crystallographybeta-Lactamasecombatcostdeep learningdeep learning modeldesignflexibilityin silicoinhibitorinnovationnovelopen sourcepeptide drugpeptide structurephysical modelprotein data bankprotein structure predictionscreeningtherapeutic developmentyeast two hybrid system
项目摘要
Protein-peptide interactions are prevalent in many cellular processes, such as signal transduction, transcription
regulation, and immune response. Peptide-based therapeutics have attracted much attention in recent years,
and a significantly growing number of peptide-based medicines have been designed and approved for a variety
of diseases. Therefore, studying protein-peptide interactions is of great significance for mechanistic investigation
of many biological processes and for peptide therapeutic development. However, because of the difficulties and
cost for determining such structures by X-ray crystallography and NMR spectroscopy, currently there are only a
limited number of protein-peptide complex structures in the Protein Data Bank. Thus, the ability to predict protein-
peptide complex structures will have a far-reaching impact on understanding important biological processes and
on designing therapeutic interventions. However, structure prediction for protein-peptide complexes is
challenging, particularly due to peptide flexibility. In this project, we will address this challenging issue by
innovative integration of bioinformatics and physical modeling approaches. Specifically, we propose to achieve
four goals:
Goal #1: We will develop novel deep-learning models for protein-peptide structure prediction. Despite successful
application of deep learning to protein structure prediction and protein-ligand interaction, deep learning has not
been applied to protein-peptide structure prediction yet, due to the flexibility and the resulting large degrees of
freedom in peptides.
Goal #2: We will develop the first in silico screening method for the search of peptide-based inhibitors, and will
construct novel peptide libraries for screening. Our in silico method will be an attractive complement to valuable
experimental technologies such as phage display and yeast two-hybrid system for rapid peptide screening at
much lower cost.
Goal #3: We will convert our computational algorithms into a modular, extensible, open-source software
package that can be disseminated to the computational modeling community at no cost.
Goal #4. As a proof-of-concept application of our in silico screening method, we will screen for novel peptide
leads by targeting β-lactamase to combat antibiotic resistance, in collaboration with my experimental collaborator
whose expertise is in molecular biology, biochemistry and microbiology.
蛋白质-肽相互作用在许多细胞过程中普遍存在,如信号转导、转录、
调节和免疫反应。近年来,基于肽的治疗剂引起了广泛关注,
越来越多的肽类药物被设计和批准用于各种
疾病。因此,研究蛋白质-肽相互作用对于研究其作用机理具有重要意义
许多生物过程和肽治疗的发展。然而,由于困难和
通过X射线晶体学和NMR光谱学确定这种结构的成本,目前只有
蛋白质数据库中的蛋白质-肽复合物结构数量有限。因此,预测蛋白质的能力-
肽复合物结构将对理解重要的生物过程产生深远的影响,
设计治疗干预。然而,对蛋白质-肽复合物的结构预测是困难的。
挑战性,特别是由于肽的灵活性。在本项目中,我们将通过以下方式解决这一具有挑战性的问题:
生物信息学和物理建模方法的创新整合。具体而言,我们建议实现
四个目标:
目标1:我们将开发用于蛋白质-肽结构预测的新型深度学习模型。尽管成功
深度学习在蛋白质结构预测和蛋白质-配体相互作用方面的应用,
由于其灵活性和由此产生的很大程度的
自由肽。
目标#2:我们将开发第一个用于搜索基于肽的抑制剂的计算机筛选方法,并将
构建用于筛选的新肽文库。我们的计算机模拟方法将是对有价值的
噬菌体展示和酵母双杂交系统等实验技术用于快速肽筛选,
更低的成本。
目标3:我们将把我们的计算算法转换成一个模块化的、可扩展的、开源的软件
软件包,可以免费传播到计算建模社区。
目标4:作为我们的计算机筛选方法的概念验证应用,我们将筛选新的肽
通过靶向β-内酰胺酶来对抗抗生素耐药性,与我的实验合作者合作,
他的专长是分子生物学、生物化学和微生物学。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Selective Tether Recruits Activated Response Regulator CheB to Its Chemoreceptor Substrate.
- DOI:10.1128/mbio.03106-21
- 发表时间:2021-12-21
- 期刊:
- 影响因子:6.4
- 作者:Li M;Xu X;Zou X;Hazelbauer GL
- 通讯作者:Hazelbauer GL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAOQIN ZOU其他文献
XIAOQIN ZOU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIAOQIN ZOU', 18)}}的其他基金
Structure prediction and in silico screening of protein-peptide interactions
蛋白质-肽相互作用的结构预测和计算机筛选
- 批准号:
10394298 - 财政年份:2020
- 资助金额:
$ 38.33万 - 项目类别:
Structure prediction and in silico screening of protein-peptide interactions
蛋白质-肽相互作用的结构预测和计算机筛选
- 批准号:
10605034 - 财政年份:2020
- 资助金额:
$ 38.33万 - 项目类别:
Database and software development for protein-nucleic acid structure predication
蛋白质核酸结构预测的数据库和软件开发
- 批准号:
8994737 - 财政年份:2015
- 资助金额:
$ 38.33万 - 项目类别:
Database and software development for protein-nucleic acid structure predication
蛋白质核酸结构预测的数据库和软件开发
- 批准号:
9188820 - 财政年份:2015
- 资助金额:
$ 38.33万 - 项目类别:
Database and software development for protein-nucleic acid structure predication
蛋白质核酸结构预测的数据库和软件开发
- 批准号:
8817202 - 财政年份:2015
- 资助金额:
$ 38.33万 - 项目类别:
A new scoring framework for selecting structural models
用于选择结构模型的新评分框架
- 批准号:
7708263 - 财政年份:2009
- 资助金额:
$ 38.33万 - 项目类别:
A new scoring framework for selecting structural models
用于选择结构模型的新评分框架
- 批准号:
7943077 - 财政年份:2009
- 资助金额:
$ 38.33万 - 项目类别:
相似国自然基金
多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
- 批准号:
24K16438 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
- 批准号:
2343858 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
- 批准号:
MR/X032922/1 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
- 批准号:
DP240102605 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
- 批准号:
2343506 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
- 批准号:
24K16033 - 财政年份:2024
- 资助金额:
$ 38.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
- 批准号:
2336012 - 财政年份:2023
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant
CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
- 批准号:
2312517 - 财政年份:2023
- 资助金额:
$ 38.33万 - 项目类别:
Standard Grant
CAREER: Understanding the Relationship of Covert and Overt Attention Using Concurrent EEG and Eye Tracking
职业:使用并发脑电图和眼动追踪了解隐性注意力和显性注意力的关系
- 批准号:
2345898 - 财政年份:2023
- 资助金额:
$ 38.33万 - 项目类别:
Continuing Grant